首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Suo G  Chen B  Zhang J  Gao Y  Wang X  He Z  Dai J 《Plant cell reports》2006,25(12):1316-1324
Bone morphogenetic protein 2 (BMP2) is important for bone tissue repair. The goal of this research is to construct a high level human BMP2 (hBMP2) expression system using transgenic tobacco plants as a bioreactor. Cauliflower mosaic virus (CaMV) 35S promoter, alfalfa mosaic virus (AMV) enhancer, tobacco mosaic virus (TMV) enhancer, matrix attachment regions (MARs) sequence, and “Kozak” sequence were used to construct recombinant expression vectors and the high-expression vectors were screened out through GUS-fusions assay. The promoter is the most important factor; double-CaMV 35S promoter is more effective than single promoter. The AMV or TMV enhancer is able to promote the foreign protein expression. After four-step purification, the activated hBMP2 (0.02% total soluble protein) was obtained. Our results suggested that the transgenic tobacco has great potential to be used as a bioreactor to produce hBMP2.  相似文献   

2.
3.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

4.
The cholera toxin B subunit (CTB) contains five identical polypeptides and targets glycosphingolipid receptors on eukaryotic cell surfaces. Increased expression of CTB in plants is critical for the development of edible vaccines. In this study, the coding sequence of the CTB gene was optimized, based on the modification of codon usage to that of tobacco plant genes and the removal of mRNA-destabilizing sequences. The synthetic CTB gene was cloned into a plant expression vector and expressed in tobacco plants under the control of the CaMV 35S promoter. The recombinant CTB protein constituted approximately 1.5% of the total soluble protein in transgenic tobacco leaves. This level of CTB production was approximately 15-fold higher than that in tobacco plants that were transformed with the bacterial CTB gene. The recombinant CTB produced by tobacco plants demonstrated strong affinity for GM1-ganglioside, which indicates that the sites required for binding and proper folding of the pentameric CTB structure were conserved. This is the first report on the optimization of the CTB-coding sequence to give a dramatic increase in CTB expression in plants.  相似文献   

5.
伪狂犬病毒gD基因在转基因烟草中的表达   总被引:6,自引:0,他引:6  
将猪伪狂犬病毒 (pseudorabiesvirus ,PRV)最主要的保护性抗原基因gD完整编码区亚克隆到修饰的植物双元表达载体pBI 35SL中 ,使其置于强启动子CaMV 35S doubleenhancer TEV 5′UTR下游 ,构建的转基因植物双元表达质粒经农杆菌介导转化烟草 .PCR检测叶片筛选阳性植株 ,Southern杂交进一步证实gD已整合到转基因烟草基因组中 .固相酶联斑点试验和Western印迹表明 ,gD在烟草获得正确表达并具有抗原性  相似文献   

6.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

7.
The plasmids carrying the gene encoding the hepatitis B surface antigen (HBsAg) under the control of 35S RNA single or dual promoters of the cauliflower mosaic virus CaMV 35S were constructed. These constructions were used for obtaining transgenic tobacco plants that synthesize the HBs antigen. The presence of HBsAg in tobacco plant extracts was confirmed by the enzyme-linked immunoassay using antibodies against the native HBs antigen. The antigen amount in plants carrying the HBsAg gene under a single 35S promoter was 0.0001–0.001 of the total soluble protein whereas the use of a dual 35S promoter increased the antigen synthesis to 0.002–0.05% of the protein. The antigen-synthesizing ability was inherited by the offspring. In the F1 plants, the antigen expression varied in different lines comprising 0.001 to 0.03% of the total soluble protein, which corresponded to the antigen amount in the F0 plants.  相似文献   

8.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

9.
Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials.  相似文献   

10.
We describe experiments directed towards development of cauliflower mosaic virus (CaMV) replicons for propagation of functional elements during infection of plants. Modifications and inserts were introduced into replaceable domains associated with the 35S promoter. The 35S enhancer (-208 to -56) was found to potentiate promoter activity when in reverse orientation sufficient to establish systemic infection. However, replacement of the 35S enhancer with that from the nos promoter caused loss of infectivity. A 31 bp oligonucleotide containing a polypurine tract specifying initiation of CaMV plus strand DNA synthesis was inserted into a 35S enhancer deletion mutant and propagated in plants. Analysis of progeny DNA showed the presence of an additional discontinuity at its new location in the 35S enhancer, indicating that the artificial primer had functioned correctly in an ectopic site. An intron and flanking sequences from the RNA leader of the Arabidopsis phytoene desaturase (pds) gene, when inserted into the 35S enhancer in forward orientation was very efficiently spliced during infection. The CaMV replicon carrying the pds gene fragment produced unusual infection characteristics, with plants showing early symptoms and then recovering. We conclude that infectious CaMV replicons can be used to carry a variety of elements that target both viral and host functions.  相似文献   

11.
To assess the role of lipoxygenase (LOX; EC 1.13.11.12) in plants, we increased the expression of LOX in the tissues of Nicotiana tabacum L. cv. KY 14 by over-expression of the LOX2 gene from the soybean (Glycine max (L.) Merrill) embryo. The LOX2 cDNA was manipulated by replacing its 5-untranslated sequence with the translational enhancer of the alfalfa mosaic virus (AMV), and subcloned into a plant expression vector, 3 to a duplicated cauliflower mosaic virus 35S promoter. The AMV-LOX2 construct was transferred into tobacco using Agrobacterium tumefaciens strain A281. The LOX2 was expressed in transgenic tobacco calli, leaves of transgenic plants, and their seed progeny at levels up to 0.1–0.2% of the total extracted protein. The introduced LOX2 affected fatty-acid oxidative metabolism as evidenced by a 50–529% increase in C6-aldehyde production. The impact on C6-aldehyde formation was greater than the effect on production of fatty-acid hydroperoxides. This is consistent with other studies indicating the greater propensity of soybean embryo LOX2 in generating C6-aldehydes than that of other well-characterized LOX isozymes.Abbreviations AMV alfalfa mosaic virus - CaMV cauliflower mosaic virus - IEF isoelectric focusing - kDa kilodalton - LOX lipoxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We thank Bernard Axelrod (Purdue University) for supplying the lipoxygenase 2 cDNA, and Arthur G. Hunt (University of Kentucky) for supplying the pKYLX712 and pBS/AMV. The advice of Arthur G. Hunt, Chris L. Schardl, Sadik Tuzun and Dwight Tomes is greatly appreciated, as is the technical assistance of Udaya Chand and Robert Versluys.  相似文献   

12.
13.
The effectiveness of different promoters for use in transgenic tobacco was compared using a reporter gene expressing chloramphenicol acetyl transferase (CAT). Plasmids with CAT gene controlled by cauliflower mosaic virus 35S (CaMV 35S), rice actin1 (Ract1) and tobacco polyubiquitin (Tubi.u4) promoters were delivered into tobacco plants by Agrobacterium-mediated transformation. The Ract1 promoter, previously shown to be a strong promoter in rice and other monocots, failed to promote strong expression in tobacco. CAT expression was greatest from the vector carrying Tubi.u4 with a 5'UTR and leader intron without a ubiquitin monomer. In transgenic plants harboring the Tubi.u4 promoter, CAT expression was approximately twice that of the CaMV 35S promoter. Our results suggest that foreign genes under the control of a ubiquitin promoter devoid of monomer will be useful for high-level gene expression in tobacco.  相似文献   

14.
Activation tagging is a powerful method of insertional mutagenesis for generating gain-of-function mutations in plants. Current activation-tagging, cassettes, based on the 35S enhancer of the cauliflower mosaic virus, have limited utility in genetic backgrounds containing 35S promoter sequences because they may cause homology-dependent gene silencing. We constructed series of novel activation-tagging vectors that do not contain the CaMV 35S enhancer but instead contain multiple tandem copies of an alternative enhancer from cassava vein mosaic virus. For selection, the T-DNAs confer Basta herbicide resistance. Resulting activation-tagging cassettes were introduced intoArabidopsis thaliana to demonstrate stable integration of the T-DNA. Vectors described here may be suitable for, but not limited to, activation-tagging projects in genetic backgrounds harboring transgenes driven by the CaMV 35S promoter.  相似文献   

15.
16.
17.
By the techniques of DNA shuffling, PCR, and restriction-ligation, chimeric forms of cauliflower (Brassica oleracea) mosaic virus (CaMV), dahlia (Dahlia pinnata) mosaic virus (DMV), and carnation (Dianthus caryophillus) etching ring virus (CERV) promoters were obtained at various combinations. Twelve chimeric promoters were cloned into pCambia binary vectors comprising the reporter GUS gene, and their activities in transgenic tobacco (Nicotiana tabacum) plants were determined fluorimetrically. 35S promoter and those of DMV (442 bp) and CERV (371 and 501 bp) were used as controls. Seven of analyzed promoters displayed higher and seven promoters lower activity in transgenic tobacco plants than 35S promoter. The highest activity was characteristic of natural DMV promoter, and the least one — natural CERV promoter 501 bp in size. The CERV promoter 371 bp in size was approximately similar in strength to 35S promoter.  相似文献   

18.
A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a plant expression vector and was under the control of the ubiquitin promoter and transformed into tobacco plants by Agrobacterium-mediated transformation. Transgenic plantlets were selected in a medium supplemented with 5 mg/L PPT. Polymerase chain reaction analysis confirmed stable integration of the synthetic CTB gene into a chromosomal DNA. A high level of CTB (1.8% of total soluble protein) was expressed in transgenic plants, which was 18-fold higher than that under the control of the expressed CaMV 35S promoter with native gene. The transgenic plants when transferred to a greenhouse proved to be resistant to 2% PPT.  相似文献   

19.
A new kind of ribosome-inactivating protein (curcin 2), induced by several different kinds of stress from Jatropha curcas leaves, under the control of the CaMV (cauliflower mosaic virus) 35S promoter, was introduced into the tobacco genome by Agrobacterium tumefaciens-mediated transformation method. The curcin 2 protein was only detected in the transgenic tobacco plantlets transformed with the cur2p fragment (coding premature curcin 2 protein), but not in the plantlets with the cur2m fragment (coding mature curcin 2 protein). The T1 population of the transgenic lines shows an increased tolerance to tobacco mosaic virus (TMV) and a fungal pathogen Rhizoctonia solani by delaying the development of systemic symptoms of TMV and reducing the damage caused by the fungal disease. The increases of the tolerances correspond to the curcin 2 level in the transgenic plants.  相似文献   

20.
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号