首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine Acinetobacter strains from patients and hospital environment were analyzed for virulence markers, quorum sensing signal production, and the presence of luxI and luxR genes. The strains had several properties in common: growth in iron limited condition, biofilm formation, and no active protease secretion. Significantly higher catechol production was determined in patient isolates (P < 0.03), but other invasiveness markers, such as lipase secretion, amount of biofilm, cell motility, antibiotic resistance, and hemolysin production, showed large variability. Notably, all members of the so-called A. calcoaceticus-A. baumannii complex, regardless of whether the source was a patient or environmental, secreted mediumto long-chain N-acyl homoserine lactones (AHL) and showed blue light inhibition of cell motility. In these strains, a luxI homologue with a homoserine lactone synthase domain and a luxR putative regulator displaying the typical AHL binding domain were identified.  相似文献   

2.
3.
Bacillus thuringiensis is well known as an effective bio-insecticidal bacterium. However, the roles of B. thuringiensis to control plant diseases are not paid great attention to. In recent years, many new functions in protecting plants from pathogen infection have been discovered. For example, acyl homoserine lactone lactonase produced by B. thuringiensis can open the lactone ring of N-acyl homoserine lactone, a signal molecule in the bacterial quorum-sensing system. This in turn, significantly silences bacterial virulence. This finding resulted in the development of a new strategy against plant bacterial diseases by quenching bacterial quorum sensing. Another new discovery about B. thuringiensis function is zwittermicin A, a linear aminopolyol antibiotic with high activity against the Oomycetes and their relatives, as well as some gram-negative bacteria. This paper summarized the relative progresses of B. thuringiensis in plant disease control and its favorable application prospects.  相似文献   

4.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C(6)-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C(9)-CPA), had a strong inhibitory effect on prodigiosin production. C(9)-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C(9)-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C(6)-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C(9)-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

5.
The free-living photoheterotrophic Gram-negative bacterium Rhodobacter sphaeroides possesses a quorumsensing (QS) regulatory system mediated by CerR-CerI, a member of the LuxR-LuxI family. To identify the genes affected by the regulatory system, random lacZ fusions were generated in the genome of R. sphaeroides strain 2.4.1 using a promoter-trapping vector, pSG2. About 20,000 clones were screened and 23 showed a significantly different level of beta- gal activities upon the addition of synthetic 7,8-cis-Ntetradecenoyl- homoserine lactone (RAI). Among these 23 clones, the clone showing the highest level of induction was selected for further study, where about a ten-fold increase of beta-gal activity was exhibited in the presence of RAI and induction was shown to be required for cerR. In this clone, the lacZ reporter was inserted in a putative gene that exhibited a low homology with catD. A genetic analysis showed that the expression of the catD homolog was initiated from a promoter of another gene present upstream of the catD. This upstream gene showed a strong homology with luxR and hence was named qsrR (quorum-sensing regulation regulator). A comparison of the total protein expression profiles for the wild-type cells and qsrR-null mutant cells using two-dimensional gel electrophoresis and a MALDI-TOF analysis allowed the identification of sets of genes modulated by the luxR homolog.  相似文献   

6.
Quorum sensing is a common mechanism used by bacteria to coordinate population behavior, and is involved in a variety of biological processes, such as bioluminescence, virulence factor synthesis, antibiotic production, and biofilm formation. To engineer the LuxI enzyme of the LuxI-LuxR quorum-sensing system, we developed a high throughput genetic selection to identify LuxI mutants with improved OHHL (3-oxo-hexanoyl homoserine lactone) synthesis in E. coli. Using this genetic selection, we created LuxI mutants with improved OHHL synthesis rates and yields through directed evolution, identifying three LuxI mutants after two generations. An in vivo semi-quantitative method allowed for verification of the genetic screen and OHHL yields were quantified using HPLC-MS/MS, revealing an 80-fold increase in a mutant culture compared to the wildtype culture. In addition to OHHL, the yields of C6HSL (hexanoyl homoserine lactone) and C8HSL (octanoyl homoserine lactone) were also improved, and a slight change in substrate specificity towards C6HSL production was observed. Based on alignment with the crystal structure of EsaI, a homolog of LuxI, two mutations are most likely involved in enhancing the interactions between the enzyme and the substrates. The high throughput genetic selection and the semi-quantitative method can be conveniently modified for the directed evolution of LuxI homologs. The identification of these LuxI mutants has implications in synthetic biology, where they can be used for the construction of artificial genetic circuits. In addition, development of drugs that specifically target quorum sensing to attenuate the pathogenesis of gram-negative infectious bacteria might also benefit from the insights into the molecular mechanism of quorum sensing revealed by the amino acid substitutions.  相似文献   

7.
Bacterial signaling is an important part of community life, but little is known about the signal transduction pathways of the as-yet-uncultured members of microbial communities. To address this gap, we aimed to identify genes directing the synthesis of signals in uncultured bacteria associated with the midguts of gypsy moth larvae. We constructed a metagenomic library consisting of DNA extracted directly from the midgut microbiota and analyzed it using an intracellular screen designated METREX, which detects inducers of quorum sensing. In this screen, the metagenomic DNA and a biosensor reside in the same cell. The biosensor consists of a quorum-sensing promoter, which requires an acylhomoserine lactone or other small molecule ligand for activation, driving the expression of the reporter gene gfp. We identified an active metagenomic clone encoding a monooxygenase homologue that mediates a pathway of indole oxidation that leads to the production of a quorum-sensing inducing compound. The signal from this clone induces the activities of LuxR from Vibrio fischeri and CviR from Chromobacterium violaceum. This study is the first to identify a new structural class of quorum-sensing inducer from uncultured bacteria.  相似文献   

8.
9.
厌氧氨氧化菌群体感应系统研究   总被引:6,自引:0,他引:6  
丁爽  郑平  张萌  陆慧锋 《生态学报》2012,32(8):2581-2587
厌氧氨氧化(Anammox)是以铵为电子供体将亚硝酸盐转化为氮气的生物过程。厌氧氨氧化菌(AAOB)生理代谢和细胞结构均十分特殊,且在氮素循环中起着十分重要的作用。厌氧氨氧化已成为环境学、微生物学、海洋学等领域的研究热点。但是,至今人们未能对厌氧氨氧化菌进行纯培养,这严重限制了对厌氧氨氧化菌的深入研究。群体感应是一种普遍存在于微生物细胞之间的通讯机制,它具有根据菌群密度和周围环境变化调节基因表达,以控制细菌群体行为的功能。厌氧氨氧化菌活性的细胞密度效应和生物团聚行为与细菌中普遍存在的群体感应现象相符。探讨了厌氧氨氧化菌群体感应系统存在的可能性、工作机制及其生态学意义,以期为厌氧氨氧化菌的分离培养、团聚体培育等提供理论指导。  相似文献   

10.
One mechanism that bacteria have adopted to regulate the production of antimicrobial compounds is population-density-dependent LuxRI-type quorum sensing (QS), exploiting the production of N-acyl homoserine lactone (AHL) autoinducer signals. In biocontrol bacteria, most known cases involve the AHL control of phenazine antibiotics production by rhizospheric pseudomonads. This work is the first to demonstrate that phenazines are not the only group of biocontrol-related antibiotics whose production is regulated by QS systems. Strain HRO-C48 of Serratia plymuthica isolated from the rhizosphere of oilseed rape and described as a chitinolytic bacterium, which protects crops against Verticillium wilt, was also shown to produce wide-range antibiotic pyrrolnitrin and several AHLs, including N-butanoyl-HSL, N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL). The genes splI and splR, which are analogues of luxI and luxR genes from other Gram-negative bacteria, were cloned and sequenced. The mutant AHL-4 (splI::miniTn5) was simultaneously deficient in the production of AHLs and pyrrolnitrin, as well as in its ability to suppress the growth of several fungal plant pathogens in vitro. However, pyrrolnitrin production could be restored in this mutant by introduction of the splIR genes cloned into a plasmid or by addition of the conditioned medium from strain C48 or OHHL standard to the growth medium.  相似文献   

11.
Quorum sensing in plant-associated bacteria   总被引:1,自引:0,他引:1  
  相似文献   

12.
In order to perform single-cell analysis and online studies of N-acyl homoserine lactone (AHL)-mediated communication among bacteria, components of the Vibrio fischeri quorum sensor encoded by luxR-P(luxI) have been fused to modified versions of gfpmut3* genes encoding unstable green fluorescent proteins. Bacterial strains harboring this green fluorescent sensor detected a broad spectrum of AHL molecules and were capable of sensing the presence of 5 nM N-3-oxohexanoyl-L-homoserine lactone in the surroundings. In combination with epifluorescent microscopy, the sensitivity of the sensor enabled AHL detection at the single-cell level and allowed for real-time measurements of fluctuations in AHL concentrations. This green fluorescent AHL sensor provides a state-of-the-art tool for studies of communication between the individuals present in mixed bacterial communities.  相似文献   

13.
Vibrio anguillarum, which causes terminal hemorrhagic septicemia in fish, was previously shown to possess a LuxRI-type quorum-sensing system (vanRI) and to produce N-(3-oxodecanoyl)homoserine lactone (3-oxo-C10-HSL). However, a vanI null mutant still activated N-acylhomoserine lactone (AHL) biosensors, indicating the presence of an additional quorum-sensing circuit in V. anguillarum. In this study, we have characterized this second system. Using high-pressure liquid chromatography in conjunction with mass spectrometry and chemical analysis, we identified two additional AHLs as N-hexanoylhomoserine lactone (C6-HSL) and N-(3-hydroxyhexanoyl)homoserine lactone (3-hydroxy-C6-HSL). Quantification of each AHL present in stationary-phase V. anguillarum spent culture supernatants indicated that 3-oxo-C10-HSL, 3-hydroxy-C6-HSL, and C6-HSL are present at approximately 8.5, 9.5, and 0.3 nM, respectively. Furthermore, vanM, the gene responsible for the synthesis of these AHLs, was characterized and shown to be homologous to the luxL and luxM genes, which are required for the production of N-(3-hydroxybutanoyl)homoserine lactone in Vibrio harveyi. However, resequencing of the V. harveyi luxL/luxM junction revealed a sequencing error present in the published sequence, which when corrected resulted in a single open reading frame (termed luxM). Downstream of vanM, we identified a homologue of luxN (vanN) that encodes a hybrid sensor kinase which forms part of a phosphorelay cascade involved in the regulation of bioluminescence in V. harveyi. A mutation in vanM abolished the production of C6-HSL and 3-hydroxy-C6-HSL. In addition, production of 3-oxo-C10-HSL was abolished in the vanM mutant, suggesting that 3-hydroxy-C6-HSL and C6-HSL regulate the production of 3-oxo-C10-HSL via vanRI. However, a vanN mutant displayed a wild-type AHL profile. Neither mutation affected either the production of proteases or virulence in a fish infection model. These data indicate that V. anguillarum possesses a hierarchical quorum sensing system consisting of regulatory elements homologous to those found in both V. fischeri (the LuxRI homologues VanRI) and V. harveyi (the LuxMN homologues, VanMN).  相似文献   

14.
15.
16.
17.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

18.
Lupp C  Ruby EG 《Journal of bacteriology》2005,187(11):3620-3629
Vibrio fischeri possesses two quorum-sensing systems, ain and lux, using acyl homoserine lactones as signaling molecules. We have demonstrated previously that the ain system activates luminescence gene expression at lower cell densities than those required for lux system activation and that both systems are essential for persistent colonization of the squid host, Euprymna scolopes. Here, we asked whether the relative contributions of the two systems are also important at different colonization stages. Inactivation of ain, but not lux, quorum-sensing genes delayed initiation of the symbiotic relationship. In addition, our data suggest that lux quorum sensing is not fully active in the early stages of colonization, implying that this system is not required until later in the symbiosis. The V. fischeri luxI mutant does not express detectable light levels in symbiosis yet initiates colonization as well as the wild type, suggesting that ain quorum sensing regulates colonization factors other than luminescence. We used a recently developed V. fischeri microarray to identify genes that are controlled by ain quorum sensing and could be responsible for the initiation defect. We found 30 differentially regulated genes, including the repression of a number of motility genes. Consistent with these data, ain quorum-sensing mutants displayed an altered motility behavior in vitro. Taken together, these data suggest that the sequential activation of these two quorum-sensing systems with increasing cell density allows the specific regulation of early colonization factors (e.g., motility) by ain quorum sensing, whereas late colonization factors (e.g., luminescence) are preferentially regulated by lux quorum sensing.  相似文献   

19.

Background  

The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria.  相似文献   

20.
Many bacteria control gene expression in response to cell population density, and this phenomenon is called quorum sensing. In Gram-negative bacteria, quorum sensing typically involves the production, release and detection of acylated homoserine lactone signalling molecules called autoinducers. Vibrio harveyi, a Gram-negative bioluminescent marine bacterium, regulates light production in response to two distinct autoinducers (AI-1 and AI-2). AI-1 is a homoserine lactone. The structure of AI-2 is not known. We have suggested previously that V. harveyi uses AI-1 for intraspecies communication and AI-2 for interspecies communication. Consistent with this idea, we have shown that many species of Gram-negative and Gram-positive bacteria produce AI-2 and, in every case, production of AI-2 is dependent on the function encoded by the luxS gene. We show here that LuxS is the AI-2 synthase and that AI-2 is produced from S-adenosylmethionine in three enzymatic steps. The substrate for LuxS is S-ribosylhomocysteine, which is cleaved to form two products, one of which is homocysteine, and the other is AI-2. In this report, we also provide evidence that the biosynthetic pathway and biochemical intermediates in AI-2 biosynthesis are identical in Escherichia coli, Salmonella typhimurium, V. harveyi, Vibrio cholerae and Enterococcus faecalis. This result suggests that, unlike quorum sensing via the family of related homoserine lactone autoinducers, AI-2 is a unique, 'universal' signal that could be used by a variety of bacteria for communication among and between species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号