首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To further explore possible avenues for accessing microbial biodiversity for drug discovery from natural products, we constructed and screened a 5,000-clone "shotgun" environmental DNA library by using an Escherichia coli-Streptomyces lividans shuttle cosmid vector and DNA inserts from microbes derived directly (without cultivation) from soil. The library was analyzed by several means to assess diversity, genetic content, and expression of heterologous genes in both expression hosts. We found that the phylogenetic content of the DNA library was extremely diverse, representing mostly microorganisms that have not been described previously. The library was screened by PCR for sequences similar to parts of type I polyketide synthase genes and tested for the expression of new molecules by screening of live colonies and cell extracts. The results revealed new polyketide synthase genes in at least eight clones. In addition, at least five additional clones were confirmed by high-pressure liquid chromatography analysis and/or biological activity to produce heterologous molecules. These data reinforce the idea that exploiting previously unknown or uncultivated microorganisms for the discovery of novel natural products has potential value and, most importantly, suggest a strategy for developing this technology into a realistic and effective drug discovery tool.  相似文献   

2.
Long-chain N-acyltyrosine synthases from environmental DNA   总被引:1,自引:0,他引:1  
The heterologous expression of DNA extracted directly from environmental samples (environmental DNA [eDNA]) in easily cultured hosts provides access to natural products produced by previously inaccessible microorganisms. When eDNA cosmid libraries were screened in Escherichia coli for antibacterially active clones, long-chain N-acyltyrosine-producing clones were found in every eDNA library. These apparently common natural products have not been previously described from screening extracts of cultured bacteria for biologically active natural products. Of the 11 long-chain N-acyl amino acid synthases (NASs) that were characterized, 10 are unique sequences. A predicted protein of previously unknown function from Nitrosomonas europaea, a gram-negative nitrifying beta-proteobacterium, is 14 to 37% identical to eDNA NASs. When cloned into E. coli, this open reading frame confers the production of long-chain N-acyltyrosines to the host and is therefore the first NAS from a cultured bacterium to be functionally characterized. Understanding the role that long-chain N-acyl amino acids play in soil microbial communities should now be feasible with the identification of a cultured organism that has the genetic capacity to produce these compounds.  相似文献   

3.
Natural products have been a critically important source of clinically relevant small molecule therapeutics. However, the discovery rate of novel structural classes of antimicrobial molecules has declined. Recently, increasing evidence has shown that the number of species cultivated from soil represents less than 1% of the total population, opening up the exciting possibility that these uncultured species may provide a large untapped pool from which novel natural products can be discovered. We have constructed and expressed in E. coli a BAC (bacterial artificial chromosome) library containing genomic fragments of DNA (5-120kb) isolated directly from soil organisms (S-DNA). Screening of the library resulted in the identification of several antimicrobial activities expressed by different recombinant clones. One clone (mg1.1) has been partially characterized and found to express several small molecules related to and including indirubin. These results show that genes involved in natural product synthesis can be cloned directly from S-DNA and expressed in a heterologous host, supporting the idea that this technology has the potential to provide novel natural products from the wealth of environmental microbial diversity and is a potentially important new tool for drug discovery.  相似文献   

4.
Long-Chain N-Acyltyrosine Synthases from Environmental DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
The heterologous expression of DNA extracted directly from environmental samples (environmental DNA [eDNA]) in easily cultured hosts provides access to natural products produced by previously inaccessible microorganisms. When eDNA cosmid libraries were screened in Escherichia coli for antibacterially active clones, long-chain N-acyltyrosine-producing clones were found in every eDNA library. These apparently common natural products have not been previously described from screening extracts of cultured bacteria for biologically active natural products. Of the 11 long-chain N-acyl amino acid synthases (NASs) that were characterized, 10 are unique sequences. A predicted protein of previously unknown function from Nitrosomonas europaea, a gram-negative nitrifying beta-proteobacterium, is 14 to 37% identical to eDNA NASs. When cloned into E. coli, this open reading frame confers the production of long-chain N-acyltyrosines to the host and is therefore the first NAS from a cultured bacterium to be functionally characterized. Understanding the role that long-chain N-acyl amino acids play in soil microbial communities should now be feasible with the identification of a cultured organism that has the genetic capacity to produce these compounds.  相似文献   

5.
The heterologous expression of natural product biosynthetic pathways is of increasing interest in biotechnology and drug discovery. It enables the (over)production of structurally complex substances through transfer of the biosynthetic genes from the original producer to more amenable heterologous hosts, and provides the basis to generate novel analogs through biosynthetic engineering. Furthermore, the lateral transfer of 'silent' (not expressed under standard laboratory conditions) secondary metabolite pathways or metagenomic DNA into surrogate host strains is expected to yield new, potentially bioactive compounds. This review discusses recent reports on the heterologous production of natural products with emphasis on polyketide and nonribosomally biosynthesized peptide compounds.  相似文献   

6.
The enormous diversity of uncultured microorganisms in soil and other environments provides a potentially rich source of novel natural products, which is critically important for drug discovery efforts. Our investigators reported previously on the creation and screening of an Escherichia coli library containing soil DNA cloned and expressed in a bacterial artificial chromosome (BAC) vector. In that initial study, our group identified novel enzyme activities and a family of antibacterial small molecules encoded by soil DNA cloned and expressed in E. coli. To continue our pilot study of the utility and feasibility of this approach to natural product drug discovery, we have expanded our technology to include Streptomyces lividans and Pseudomonas putida as additional hosts with different expression capabilities, and herein we describe the tools we developed for transferring environmental libraries into all three expression hosts and screening for novel activities. These tools include derivatives of S. lividans that contain complete and unmarked deletions of the act and red endogenous pigment gene clusters, a derivative of P. putida that can accept environmental DNA vectors and integrate the heterologous DNA into the chromosome, and new BAC shuttle vectors for transferring large fragments of environmental DNA from E. coli to both S. lividans and P. putida by high-throughput conjugation. Finally, we used these tools to confirm that the three hosts have different expression capabilities for some known gene clusters.  相似文献   

7.
The enormous diversity of uncultured microorganisms in soil and other environments provides a potentially rich source of novel natural products, which is critically important for drug discovery efforts. Our investigators reported previously on the creation and screening of an Escherichia coli library containing soil DNA cloned and expressed in a bacterial artificial chromosome (BAC) vector. In that initial study, our group identified novel enzyme activities and a family of antibacterial small molecules encoded by soil DNA cloned and expressed in E. coli. To continue our pilot study of the utility and feasibility of this approach to natural product drug discovery, we have expanded our technology to include Streptomyces lividans and Pseudomonas putida as additional hosts with different expression capabilities, and herein we describe the tools we developed for transferring environmental libraries into all three expression hosts and screening for novel activities. These tools include derivatives of S. lividans that contain complete and unmarked deletions of the act and red endogenous pigment gene clusters, a derivative of P. putida that can accept environmental DNA vectors and integrate the heterologous DNA into the chromosome, and new BAC shuttle vectors for transferring large fragments of environmental DNA from E. coli to both S. lividans and P. putida by high-throughput conjugation. Finally, we used these tools to confirm that the three hosts have different expression capabilities for some known gene clusters.  相似文献   

8.
The Gram-positive bacterium Corynebacterium glutamicum sustains the industrial production of chiral molecules such as L-amino acids. Through heterologous gene expression, C. glutamicum is becoming a sustainable source of small organic molecules and added-value chemicals. The current methods to implement heterologous genes in C. glutamicum rely on replicative vectors requiring lasting selection or chromosomal integration using homologous recombination. Here, we present a set of dedicated and transversal tools for genome editing and gene delivery into C. glutamicum. We generated a cosmid-based library suitable for efficient double allelic exchange, covering more than 94% of the chromosome with an average 5.1x coverage. We employed the library and an iterative marker excision system to generate the carotenoid-free C. glutamicum BT1-C31-Albino (BCA) host, featuring the attachment sites for actinophages ϕC31 and ϕBT1 for one-step chromosomal integration. As a proof-of-principle, we employed a ϕC31-based integration and a Cre system for the markerless expression of the type III polyketide synthase RppA, and a ϕBT1-based integration system for the expression of the phosphopantetheinylation-dependent non-ribosomal peptide synthetase BpsA in the C. glutamicum BCA host. The developed genomic library and microbial host, and the characterized molecular tools will contribute to the study of the physiology and the rise of C. glutamicum as a leading host for drug discovery.  相似文献   

9.
10.
11.
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.  相似文献   

12.
聚酮是一大类具有重要生物活性的天然产物,其生物合成途径复杂多样。利用异源宿主合成聚酮化合物要比使用天然生产菌有很多优点。异源宿主的选择是异源生物合成聚酮的关键。这种宿主必须能够大量表达大分子聚酮合成酶(300 kDa或更大)且能够大规模的转译后修饰这些蛋白;还要能够形成大量的像丙二酰CoA、甲基丙二酰CoA等细胞内起始单元。随着各种技术的不断进步,异源宿主很可能成为大规模生产聚酮化合物的一个强有力平台。本文对聚酮合成酶,异源生产聚酮的优点、条件和应用都有所阐述。  相似文献   

13.
The quest for the discovery of novel natural products has entered a new chapter with the enormous wealth of genetic data that is now available. This information has been exploited by using whole-genome sequence mining to uncover cryptic pathways, or biosynthetic pathways for previously undetected metabolites. Alternatively, using known paradigms for secondary metabolite biosynthesis, genetic information has been 'fished out' of DNA libraries resulting in the discovery of new natural products and isolation of gene clusters for known metabolites. Novel natural products have been discovered by expressing genetic data from uncultured organisms or difficult-to-manipulate strains in heterologous hosts. Furthermore, improvements in heterologous expression have not only helped to identify gene clusters but have also made it easier to manipulate these genes in order to generate new compounds. Finally, and perhaps the most crucial aspect of the efficient and prosperous use of the abundance of genetic information, novel enzyme chemistry continues to be discovered, which has aided our understanding of how natural products are biosynthesized de novo, and enabled us to rework the current paradigms for natural product biosynthesis.  相似文献   

14.
The majority of microorganisms in natural environments are difficult to cultivate, but their genes can be studied via metagenome libraries. To enhance the chances that these genes become expressed we here report the construction of a broad-host-range plasmid vector (pRS44) for fosmid and bacterial artificial chromosome (BAC) cloning. pRS44 can be efficiently transferred to numerous hosts by conjugation. It replicates in such hosts via the plasmid RK2 origin of replication, while in Escherichia coli it replicates via the plasmid F origin. The vector was found to be remarkably stable due to the insertion of an additional stability element ( parDE ). The copy number of pRS44 is adjustable, allowing for easy modifications of gene expression levels. A fosmid metagenomic library consisting of 20 000 clones and BAC clones with insert sizes up to 200 kb were constructed. The 16S rRNA gene analysis of the fosmid library DNA confirmed that it represents a variety of microbial species. The entire fosmid library and the selected BAC clones were transferred to Pseudomonas fluorescens and Xanthomonas campestris (fosmids only), and heterologous proteins from the fosmid library were confirmed to be expressed in P. fluorescens . To our knowledge no other reported vector system has a comparable potential for functional screening across species barriers.  相似文献   

15.
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.  相似文献   

16.
基于活性和基因从海洋微生物中筛选烯二炔类抗生素   总被引:2,自引:0,他引:2  
【目的】高质量的海洋微生物菌种库及其天然产物库是新药开发的重要来源。在本研究中我们通过筛选新的烯二炔类抗生素来对已经构建的海洋微生物天然产物库进行质量评价。【方法】首先我们根据烯二炔类抗生素能引起DNA断裂的活性构建了活性筛选模型,并对我们的天然产物库进行筛选;其次根据合成烯二炔核心结构的独特且保守的重复I型聚酮合成酶设计了引物,通过PCR扩增的方法对海洋微生物库进行序列筛选。【结果】通过活性筛选从我们的海洋微生物天然产物库中获得一个阳性的发酵产物。对该阳性菌(LS481)的系统发育学分析表明该菌属于能产生烯二炔类化合物—Dynemicin的Micromonospora chersina,对其发酵产物TLC分析证明该菌确实产生Dynemicin类化合物。通过基因筛选得到了2个具备合成烯二炔核心结构聚酮合成酶的菌株,16S rRNA基因分析显示其中一个很可能为灰色链霉菌(MS098),另外一株菌则同Streptomyces vinaceus NBRC 13425T和Streptomyces cirratus NRRLB-3250T最相近。【结论】我们的活性筛选模型能够有效获得烯二炔类物质,结合基因筛选能够进一步获得可能产生烯二炔物质的菌株。初筛结果也再一次验证了我们海洋微生物天然产物库的质量较好。  相似文献   

17.
Polyketides are structurally diverse secondary metabolites, many of which have antibiotic or anticancer activity. Type I modular polyketide synthase (PKS) genes are typically large and encode repeating enzymatic domains that elongate and modify the nascent polyketide chain. A fosmid metagenomic library constructed from an agricultural soil was arrayed and the macroarray was screened for the presence of conserved ketosynthase [β-ketoacyl synthase (KS)] domains, enzymatic domains present in PKSs. Thirty-four clones containing KS domains were identified by Southern hybridization. Many of the KS domains contained within metagenomic clones shared significant similarity to PKS or nonribosomal peptide synthesis genes from members of the Cyanobacteria or the Proteobacteria phyla. However, analysis of complete clone insert sequences indicated that the blast analysis for KS domains did not reflect the true phylogenetic origin of many of these metagenomic clones that had a %G+C content and significant sequence similarity to genes from members of the phylum Acidobacteria. This conclusion of an Acidobacteria origin for several clones was further supported by evidence that cultured soil Acidobacteria from different subdivisions have genetic loci closely related to PKS domains contained within metagenomic clones, suggesting that Acidobacteria may be a source of novel polyketides. This study also demonstrates the utility of combining data from culture-dependent and -independent investigations in expanding our collective knowledge of microbial genomic diversity.  相似文献   

18.
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms—Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively—to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site (attB) for φC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.  相似文献   

19.
Numerous terpenoid compounds are present in copious amounts in the oleoresin produced by conifers, especially following exposure to insect or fungal pests. CDNA clones for many terpene synthases responsible for the biosynthesis of these defense compounds have been recovered from several conifer species. Here, the use of three terpene synthase sequences as heterologous probes for the discovery of related terpene synthase genes in Douglas-fir, Pseudotsuga menziesii (Mirbel) Franco (Pinaceae), is reported. Four full-length terpene synthase cDNAs were recovered from a methyl jasmonate-induced Douglas-fir bark and shoot cDNA library. These clones encode two multi-product monoterpene synthases [a (-)-alpha-pinene/(-)-camphene synthase and a terpinolene synthase] and two single-product sesquiterpene synthases [an (E)-beta-farnesene synthase and a (E)-gamma-bisabolene synthase].  相似文献   

20.

Background  

Secondary metabolites biosynthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) family of enzymes constitute several classes of therapeutically important natural products like erythromycin, rapamycin, cyclosporine etc. In view of their relevance for natural product based drug discovery, identification of novel secondary metabolite natural products by genome mining has been an area of active research. A number of different tailoring enzymes catalyze a variety of chemical modifications to the polyketide or nonribosomal peptide backbone of these secondary metabolites to enhance their structural diversity. Therefore, development of powerful bioinformatics methods for identification of these tailoring enzymes and assignment of their substrate specificity is crucial for deciphering novel secondary metabolites by genome mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号