首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

2.
Pasteuria penetrans is a promising biological control agent of plant-parasitic nematodes. This study was conducted to determine effects of temperature on the bacterium''s development in Meloidogyne arenaria. Developmental stages of P. penetrans were viewed with a compound microscope and verified with scanning electron microscopy within each nematode at 100 accumulated degree-day intervals by tracking accumulated degree-days at three temperatures (21, 28, and 35 °C). Five predominant developmental stages of P. penetrans were identified with light microscopy: endospore germination, vegetative growth, differentiation, sporulation, and maturation. Mature endospores were detected at 28, 35, and >90 calendar days at 35, 28, and 21 °C, respectively. The number of accumulated degree-days required for P. penetrans to reach a specific developmental stage was different for each temperature. Differences were observed in the development of P. penetrans at 21, 28, and 35 °C based on regression values fitted for data from 100 to 600 accumulated degree-days. A linear response was observed between 100 to 600 accumulated degree-days; however, after 600 accumulated degree-days the rate of development of P. penetrans leveled off at 21 and 28 °C, whereas at 35 °C the rate decreased. Results suggest that accumulated degree-days may be useful only in predicting early-developmental stages of P. penetrans.  相似文献   

3.
Oxamyl was applied to both uncut and cut potato tubers in aqueous solutions of 1,000 to 32,000 μg/ml. Emergence in greenhouse pots was delayed for a day or more after soaking cut tuber pieces in 32,000 μg/ml. After 10 weeks plant growth was greater, relative to the control, when Pratylenchus penetrans-infested soil was planted with cut tubers soaked for 20 minutes in 32,000 μg/ml. Soaking for 40 minutes did not increase nematode control nor affect plant growth. Oxamyl applied to tubers at 1,000 μg/ml reduced the numbers of P. penetrans in the soil by 20% and in the roots by 35%; at 32,000 μg/ml, the numbers of P. penetrans in the soil were reduced by 73-86% and in the roots by 86-97%. The numbers of P. penetrans did not increase in the roots of plants developed from cut tubers soaked in 32,000 μg/ml over a period of 10 weeks, but numbers of lesion nematodes had begun to increase in the soil.  相似文献   

4.
The long-term effectiveness of soil solarization integrated with (integration of pest management [IPM]) a biological control agent (Trichoderma virens), chemical fungicide (pentachloronitrobenzene [PCNB]), organic amendment (chicken litter) or physical method (black agriplastic mulch) to reduce southern blight (Sclerotium rolfsii) and southern root-knot diseases (Meloidogyne incognita) were evaluated on vegetable production. Results showed that the long-term effectiveness of IPM plus soil solarization reduced soilborne diseases of vegetables more than two years following the termination of solarization. These disease management strategies in 1991 and 1992, following soil solarization in 1990, reduced the numbers of sclerotia in the soil, and the number of plants killed by southern blight and root-knot of tomatoes, compared to nonsolarized bare soil treatment. The integration of a reduced dosage level of PCNB or T. virens in field plots, reduced southern blight of tomatoes by 100% and 71%, respectively, in solarized soil, compared to nonsolarized bare soil two years following soil solarization. PCNB effectively controlled southern blight in nonsolarized bare soil both years. All solarized treatments, except PCNB plus solarized soil increased tomato yields compared to nonsolarized bare soil plots. In the second study (1992) following soil solarization in 1991, the effectiveness of solarized bare soil, and nonsolarized bare soil mulched with black agriplastic film, with or without Reemay spunbounded polyester row cover, were effective in reducing root-knot of tomatoes as indicated by the root-knot gall index. Following a one year fallow period in 1994 three years following soil solarization, the root-knot gall index for severity of tomato roots grown in solarized bare soil, nonsolarized bare soil, black agriplastic mulched bare nonsolarized soil and black agriplastic mulched solarized bare soil, were 1.0, 3.0, 3.0 and 2.0, respectively, on a 0–5 scale, where 0=0% and 5=100% root-knot galled. In the third study 1992 and 1993, different dosage levels of chicken litter were used to amend soil artificially infested with sclerotia of S. rolfsii at different depths following solarization, decreased the number of viable sclerotia by 85–100%. All solarized treatments and nonsolarized bare soil amended with 18.8 MT/ha of chicken litter, were effective in controlling southern root-knot damage, and postharvest storage root rots of sweetpotato storage roots (Fusarium root rot [Fusarium solani] and Java black rot [Diplodia tubericola]). Our study showed that all soil solarization treatments, and soils amended with chicken litter, stimulated a shift in the soil microbial population dynamics. Rhizobacteria of Bacillus spp. and fluorescent pseudomonads increased significantly in the rhizosphere, rhizoplane, and interior root tissues of tomatoes and sweetpoatoes, grown in solarized soil compared to nonsolarized soil. These microorganisms may have contributed to the increased growth response of vegetables and some were probably suppressive to soilborne diseases  相似文献   

5.
Summary Field plots of Tifton loamy sand were treated with various soil pesticides and left exposed or covered with biodegradable paper or black polyethylene film mulch. Cucumber, squash, muskmelon, sweetcorn, and polebean were planted in one or more experiments. Trickle irrigation under the film was used in several tests. Isolations were made from roots of all crops except sweetcorn, and the fungi most commonly isolated wereFusarium oxysporum, Pythium spp.,F. solani, F. roseum, andRhizoctonia solani from cucurbits andF. solani andF. oxysporum from polebean. Significantly fewer fungi were isolated from plants grown in soil treated with DD-MENCS (20% methyl isothiocyanate +80% chlorinated C3 hydrocarbons) or methyl bromide-chloropicrin (2:1) (MBC) than from controls, and populations ofPythium spp.,F. solani, andF. oxysporum, were reduced in soil. Sodium azide, sodium azide +ethoprop or carbofuran, and sodium methyl dithiocarbamate were less effective than DD-MENCS and MBC.Nematologist, ARS, USADA; Soil Scientist, ARS, USDA; and Associate Professor, Department of Entomology, University of Georgia, respectively, Coastal Plain Station, Tifton, Ga., 31794, United States of America  相似文献   

6.
Pasteuria penetrans is a gram positive bacterium that prevents Meloidogyne spp. from reproducing and diminishes their ability to penetrate roots. The attachment of the endospores to the cuticle of the nematodes is the first step in the life cycle of the bacterium and is essential for its reproduction. As a preliminary study to a field solarization test, the effects of temperature on the attachment of P. penetrans on Meloidogyne arenaria race 1 were investigated. Preexposing second-stage juveniles (J2) of M. arenaria to approximately 30 °C in water before exposing them to endospores increased their receptivity to endospore attachment when compared to treating J2 at 25 °C or 35 °C. In tests with soil, highest attachment occurred when J2 were incubated in soil infested with endospores and maintained at 20 °C to 30 °C for 4 days. Heating J2 in soil to sublethal temperatures (35 °C to 40 °C) decreased endospore attachment. Incubating P. penetrans endospores in soil at 30 °C to 70 °C for 5 hours a day over 10 days resulted in reductions of endospore attachment to nematodes as temperatures of incubation increased to 50 °C and higher.  相似文献   

7.
Greenhouse and growth room experiments were conducted to investigate the effect of host plant in relation to different nematode inoculum levels, and temperature fluctuations on the development of Pasteuria penetrans. Host plant affected the development of P. penetrans indirectly through its effect on nematode development. Endospores collected from Meloidogyne javanica females reared on different hosts did not show any differences in subsequent attachment and infectivity. The numbers of endospores produced per infected female were reduced with increasing numbers of females parasitizing okra and tomato roots. Fluctuating temperatures retarded the development of P. penetrans. The life cycle of the parasite was completed faster at approximately constant temperatures close to 30 °C than when the temperature fluctuated away from 30 °C. The temperature of irrigation water did not affect the duration of life cycle of P. penetrans.  相似文献   

8.
[背景] 马铃薯黑痣病是由立枯丝核菌(Rhizoctonia solani)引起的一种典型土传病害,目前该病害生物防治的菌种资源比较有限,相应菌株生防机制的研究更是缺乏。[目的] 明确马铃薯黑痣病病原菌立枯丝核菌(R. solani) JT18的拮抗菌QHZ11对马铃薯黑痣病的生防效果,揭示QHZ11对黑痣病的部分防治机理。[方法] 在灭菌土壤中分别接种R. solani JT18(CK),R. solani JT18和普通有机肥(Organic Fertilized,OF),R.solaniJT18和氨基酸有机肥(AA+OF)及R. solani JT18和QHZ11生物有机肥(BOF11),结合实时荧光定量PCR (Real-Time Fluorescence Quantitative PCR,RT-qPCR)等方法,研究马铃薯全生育期不同处理R.solaniJT18在马铃薯根际和植株不同部位的数量变化及拮抗菌QHZ11与R.solaniJT18的数量消长规律,同时比较不同处理黑痣病的病情指数及相应的防效。[结果] RT-qPCR结果表明,随马铃薯生育进程的推进,马铃薯根际、根系和匍匐茎R.solaniJT18的数量在各处理中均呈现先升高至块茎膨大期到达峰值后下降的趋势,而且各部位R.solaniJT18的数量为CK>OF>AA+OF>BOF11且根际>根系>匍匐茎;拮抗菌QHZ11的数量变化趋势与R.solaniJT18相同,但峰值在块茎形成期,并且同时期同一部位QHZ11的定殖数量均显著高于R.solaniJT18,甚至高出2个数量级,说明QHZ11占用了一定的营养资源和生态位点,严重抑制了R.solaniJT18的生长和繁殖。病情结果表明:CK病情指数最高,OF、AA+OF和BOF11处理均显著低于CK,其中BOF11处理发病最轻;生防结果则相反,为BOF11>AA+OF>OF处理,说明普通有机肥、氨基酸有机肥及生物有机肥均可不同程度地防治马铃薯黑痣病,其中以生物有机肥效果最显著。[结论] QHZ11以有机肥为载体施入土壤后,可以通过在马铃薯根际及植株不同部位竞争营养和生态位点,从而有效抑制黑痣病病原菌R.solaniJT18的生存和繁殖,起到显著的生防效果,这对QHZ11生物有机肥的应用和推广具有重要意义,并为进一步研究QHZ11的生防机制奠定了基础。  相似文献   

9.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.  相似文献   

10.
The pathogenicity of Pratylenchus penetrans (root-lesion nematode) to Phaseolus vulgaris (navy bean) was evaluated in greenhouse experiments. Shoot and root fresh weight of cv. Sanilac plants were increased 4 and 21%, respectively, by an initial population density (Pi) of 25 P. penetrans per 100 cm³ soil. Leaf area and shoot fresh and dry weights were decreased by a Pi of 50 or more P. penetrans per 100 cm³ soil. A significant positive linear relationship existed between initial soil population densities of P. penetrans and final soil and root population densities of this nematode. Three dry bean cultivars, Sanilac, Seafarer, and Tuscola, were susceptible to P. penetrans, and yields were reduced by 43-76% when plants were exposed to a Pi of 150 P. penetrans per 100 cm³ soil. P. penetrans also reproduced on bean cultivars Saginaw, Gratiot, and Kentwood, but did not decrease bean yields, suggesting that these cultivars were tolerant to this nematode.  相似文献   

11.
The effects of mycorrhisation and inoculation with soil bacteria on the disease caused by Meloidogyne incognita on tomato were studied in pots under greenhouse conditions. Efficacy in promoting plant growth and reducing disease severity and final nematode densities were evaluated for two arbuscular mycorrhizal fungi (AMF; Funneliformis mosseae and Rhizophagus irregularis), three soil bacteria with different living strategies (the endophyte Bacillus megaterium, a rhizospheric Pseudomonas putida and the hyperparasite of nematodes Pasteuria penetrans) and combinations of the fungi and bacteria. In M. incognita-infested plants, F. mosseae increased tomato growth more than R. irregularis, and plants inoculated with B. megaterium presented higher shoot fresh weight than with P. putida or P. penetrans, but dual inoculation did not improve tomato growth more than single inoculations. Disease severity and final nematode densities were reduced by F. mosseae compared to non-mycorrhizal plants. B. megaterium and P. penetrans reduced both the root galling and the final nematode densities compared to treatments without bacteria. P. penetrans reduced final nematode densities more than B. megaterium or P. putida. Dual inoculation of AMF and P. penetrans showed the highest efficacy in reducing the final nematode densities in tomato.  相似文献   

12.
The effect of soil moisture at different temperatures on root rot of wheat seedlings caused by Rhizoctonia solani AG-8 was studied in temperature controlled water tanks under glasshouse conditions. Four moisture levels (15, 30, 50 and 75% of soil water holding capacity at saturation which were equal to –10, –7, –5 and –3 kPa, respectively) were tested in tanks maintained 10, 15, 20 or 25 °C. The role of microbial activity in the effect of soil moisture and temperature on disease severity was also studied by including treatments of steam treated soil. Results showed that at soil moisture levels optimum for plant growth (50 and 75% WHC) disease was more severe at a lower temperature (10 °C), but under relatively dry conditions (15% WHC) disease levels were similar at all temperatures tested. In warm soils (20 and 25 °C) at high soil moisture levels (50 and 75% WHC), disease was more severe in steam treated soil than in non-steam treated soil, indicating that the suppression of disease in natural soil under these conditions was associated with high soil microbial activity.  相似文献   

13.
Population growth of Pratylenchus penetrans on 13 fall and winter cover crops was studied in the greenhouse and field. All crops except oat cv. Saia supported population growth of P. penetrans in greenhouse experiments, although the response of P. penetrans to oat cv. Saia varied considerably between experiments. The mean ratio of the final population density/initial population density (Pf/Pi) after 16 weeks for P. penetrans added to a greenhouse soil mix was 0.09, whereas Pf/Pi values after 10 weeks for two experiments with naturally infested soil were 0.95 and 2.3. Although P. penetrans increased on sudangrass cv. Trudan 8 and sudangrass × sorghum hybrid cv. SS 222, subsequent incorporation of sudangrass vegetation into soil reduced P. penetrans populations to preplant levels. Field experiments were inconclusive but suggested that oat cv. Saia or rye cv. Wheeler may be better choices for winter cover than weed-contaminated fallow or other crops on P. penetrans-infested sites in the Pacific Northwest.  相似文献   

14.
Higher populations of Meloidogyne incognita larvae and Pratylenchus penetrans were recovered from soil treated with carbofuran 10 and 15 days after treatment, respectively, than were recovered from untreated control soil. The number of P. penetrans, however, was lower 50 days after treatment, and symptoms developed only occasionally on the root systems of host plants. Populations of Tylenchorhynchus claytoni inoculated at different distances from the base of corn seedlings growing in carbofuran-treated soil did not move toward the plant, whereas they were attracted in untreated soil from a distance of 12 cm. P. penetrans moved at random in treated agar medium when inoculations occurred 4 cm away from the root tips of tomato seedlings under aseptic conditions. Those nematodes that reached the roots were never observed feeding during a 20-day observation period. Specimens of P. penetrans placed on the developing roots moved at random and never penetrated. In contrast, numerous P. penetrans penetrated roots of seedlings growing in untreated medium.  相似文献   

15.
The effect of application of the fungicide pentachloronitrobenzene (PCNB) at levels between 2 and 50 mg kg–1 soil on root growth, mycorrhizal infection and P uptake was studied in pot culture with oats (Avena sativa cv. Alfred) growing in a rendzina soil low in available P. The soil had been partially sterilized by X-ray, and half of the pots were inoculated with spores of the VAM-fungusGlomus mosseae (indigenous species).Soil irradiation (0.5 Mrad) did not decrease the levels of infection by VAM. Application of PCNB decreased the VAM-infected root length, at 50 mg PCNB kg–1 soil VAM-infected root length was about 12% of the controls. Total root length, however, increased to about 126% of control values at PCNB rates up to 20 mg kg–1 soil, but decreased to 89% of the controls at 50 mg kg–1 soil. Total P-uptake decreased with increasing levels of PCNB and was linearly correlated with infected root length (r=0.92).The stimulation of root growth by PCNB at rates up to 20 mg kg–1 soil is regarded as an indirect effect, brought about by suboptimal P-supply due to inhibition of VA-mycorrhiza. Conversely, the reduction of total root length at 50 mg PCNB kg–1 soil is most likely a direct effect. Due to the phytotoxicity of the fungicide, the contribution of the indigenous VA-mycorrhiza to plant P uptake under field conditions cannot be determined by soil application of PCNB at rates sufficient for complete inhibition of VAM.As inhibition or absence of VAM may lead to compensatory root growth, mycorrhizal dependency ought to be calculated from the amounts of P taken up per unit root length in mycorrhizal and nonmycorrhizal plants, respectively.  相似文献   

16.
The fungus, Muscodor albus, was tested for nematicidal and nematostatic potential against four plant-parasitic nematode species with three different feeding modes on economically important vegetable crops in the Pacific Northwest. Meloidogyne chitwoodi, Meloidogyne hapla, Paratrichodorus allius, and Pratylenchus penetrans were exposed for 72 h to volatiles generated by M. albus cultured on rye grain in sealed chambers at 24 °C in the laboratory. In addition, the nematodes were inoculated into soil fumigated with M. albus, and incubated for 7 days prior to the introduction of host plants under greenhouse conditions. The mean percent mortality of nematodes exposed to M. albus in the chamber was 82.7% for P. allius, 82.1% for P. penetrans, and 95% for M. chitwoodi; mortality in the nontreated controls was 5.8%, 7%, and 3.9%, respectively. Only 21.6% of M. hapla juveniles died in comparison to 8.9% in controls. However, 69.5% of the treated juveniles displayed reduced motility and lower response to physical stimulus by probing, in comparison to the control juveniles. This is evidence of nematostasis due to M. albus exposure. The greenhouse study showed that M. albus caused significant reduction to all nematode species in host roots and in rhizosphere soil. The percent mortality caused by M. albus applied at 0.5% and 1.0% w/w in comparison to the controls was as follows: 91% and 100% for P. allius in the soil; 100% for P. penetrans in bean roots and soil; 85% and 95% for M. chitwoodi in potato roots, and 56% and 100% in the soil; 100% for M. hapla both in pepper roots and soil. In this study, M. albus has shown both nematostatic and nematicidal properties.  相似文献   

17.
A hypothesis that cherry rootstocks grown under optimal nutrient conditions are affected less by Pratylenchus penetrans infection than those grown under deficient nutrient conditions was tested by growing four Prunus avium L. rootstocks (''Mazzard'', ''Mahaleb'', ''GI148-1'', and ''GI148-8'') at a soil pH of 7.0 over a period of 3 months under greenhouse conditions (25 ñ 2 °C). Pratylenchus penetrans was inoculated at 0 (control) or 1,500 nematodes per g fresh root weight for a total of 3,600, 4,200, 10,500, and 11,400 per plant on Mazzard, Mahaleb, GI148-1, and GI148-8, respectively, with nutrients (commercial fertilizer) applied once at planting (deficient) or twice weekly (optimal). The experiment was repeated once. The optimum nutrient regime resulted in greater soil nutrient levels and plant growth; higher leaf concentrations of N, P, K, and Mg; and fewer P. penetrans than under the deficient nutrient regime. The addition of fertilizer either may increase nematode mortality in the soil or improve rootstock resistance to nematode infection. Increases in Ca in leaves from the nutrient-deficient and nematode-infected treatments suggested the plants were physiologically stressed. The Pf/Pi ratios indicated that these rootstocks may have had resistance to P. penetrans; however, because of the dominant role of nutrition in the experimental design, the question of resistance could not be properly addressed.  相似文献   

18.
Rhizoctonia solani, the causal agent of stem canker and black scurf on potato, survives as sclerotia on tubers, in soil and in plant residues. The objective of the present study was to evaluate the importance of inoculum source on disease development. Disease‐free minitubers and seed tubers contaminated with low levels of R. solani were planted in fumigated or artificially inoculated growth mixture in greenhouse experiments. Black scurf incidence and severity were significantly higher when the inoculum was present in both seed tubers and soil, compared with either of them separately. The severity of disease symptoms on the subterranean parts of the plant also were significantly higher in plots where both seed tubers and soil were contaminated, compared with plots where the inoculum source was either the seed tubers or the soil. Thus, both major sources of inoculum, seed tubers and soil, are important in disease development. However, when both sources are present, black scurf incidence and severity are increased, leading to economical damage to tuber yield and quality. Additional results from field trials support these findings. Disease incidence and severity on daughter tubers were correlated with levels of contamination in seed tubers and soil. When seed tubers and soil were heavily infested, the levels of black scurf incidence and severity on daughter tubers were very high; when seed tuber and soil infestation were very low, black scurf incidence and severity on progeny were also lower. Disease levels were reduced by in‐furrow fungicide treatment, but were less effective when the initial levels of the fungus on the seed tubers and in the soil were high.  相似文献   

19.
The rhizomes of Zingiber cassumunar exhibited strong fungitoxic action against Rhizoctonia solani, the damping-off pathogen. On chemical and spectral investigations, the antifungal compound was found to be zerumbone — a sesquiterpene. Its minimum effective dose against R. solani was 1000 ppm, much lower than some commercial fungicides. Zerumbone had fungistatic activity, a narrow fungitoxic spectrum and was not phytotoxic. Moreover, when used as a seed treatment, zerumbone could control damping-off disease of Phaseolus aureus caused by Rhizoctonia solani by 85.7%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号