首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 3 (FHL3) is a type of LIM-only protein that contains four tandemly repeated LIM motifs with an N-terminal single zinc finger (half LIM motif). FHL3 expresses predominantly in human skeletal muscle. In this report, FHL3 was shown to be a novel interacting partner of FHL2 using the yeast two-hybrid assay. Furthermore, site-directed mutagenesis of FHL3 indicated that the LIM2 of FHL3 is the essential LIM domain for interaction with FHL2. Green fluorescent protein (GFP) was used to tag FHL3 in order to study its distribution during myogenesis. Our result shows that FHL3 was localized in the focal adhesions and nucleus of the cells. FHL3 mainly stayed in the focal adhesion during myogenesis. Moreover, using site-directed mutagenesis, the LIM1 of FHL3 was identified as an essential LIM domain for its subcellular localization. Mutants of GFP have given rise to a novel technique, two-fusion fluorescence resonance energy transfer (FRET), in the determination of protein-protein interaction at particular subcellular locations of eukaryotic cells. To determine whether FHL2 and FHL3 can interact with one another and to locate the site of this interaction in a single intact mammalian cell, we fused FHL2 and FHL3 to different mutants of GFP and studied their interactions using FRET. BFP/GFP fusion constructs were cotransfected into muscle myoblast C2C12 to verify the colocalization and subcellular localization of FRET. We found that FHL2 and FHL3 were colocalized in the mitochondria of the C2C12 cells and FRET was observed by using an epi-fluorescent microscope equipped with an FRET specific filter set.  相似文献   

2.
3.
4.
5.
The LIM proteins FHL1 and FHL3 are expressed differently in skeletal muscle   总被引:8,自引:0,他引:8  
We have determined the complete mRNA sequence of FHL3 (formerly SLIM2). We have confirmed that it is a member of the family of LIM proteins that share a similar secondary protein structure, renamed as Four-and-a-Half-LIM domain (or FHL) proteins in accordance with this structure. The "half-LIM" domain is a single zinc finger domain that may represent a subfamily of LIM domains and defines this particular family of LIM proteins. The distribution of FHL mRNA expression within a variety of murine tissues is complex. Both FHL1 and FHL3 were expressed in a number of skeletal muscles while FHL2 was expressed at high levels in cardiac muscle. Localisation of FHL3 to human chromosome 1 placed this gene in the proximity of, but not overlapping with, alleles associated with muscle diseases. FHL1 and FHL3 mRNAs were reciprocally expressed in the murine C2C12 skeletal muscle cell line and this suggested that the pattern of expression was linked to key events in myogenesis.  相似文献   

6.
Wong CH  Fung YW  Ng EK  Lee SM  Waye MM  Tsui SK 《FEBS letters》2010,584(22):4511-4516
Four-and-a-half LIM domain protein 1B (FHL1B) is an alternatively-spliced isoform of FHL1. In this study, FHL1B was demonstrated to interact with the β catalytic subunit (Cβ) of a type 2A protein phosphatase (PP2A) by yeast two-hybrid screening. Domain studies using a small-scale yeast two-hybrid interaction assay revealed the mediation of protein-protein interaction by FHL1B’s C-terminus. Interaction between FHL1B and PP2A was further verified by co-immunoprecipitation. FHL1B was also shown to shuttle between nucleus and cytoplasm at different phases of the cell cycle. These data suggest that the FHL1B/PP2A interaction may illustrate a novel cell-cycle regulatory pathway.

Structured summary

MINT-8044739: FHL1B (uniprotkb:Q13642-2) physically interacts (MI:0915) with PP2Acbeta (uniprotkb:P62714) by two hybrid (MI:0018)MINT-8044769, MINT-8044778: FHL1B (uniprotkb:Q13642-2) physically interacts (MI:0915) with PP2Acbeta (uniprotkb:P62714) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

7.
FHL2转录激活结构域的定位   总被引:2,自引:0,他引:2  
LIM蛋白家族成员FHL2 (fourandhalfLIMdomainprotein)在转录调节、细胞凋亡及肿瘤的发生发展中都起着重要作用。利用GAL4转录因子中的DNA结合结构域 (DBD)和含有与DBD结合序列的荧光素酶报告基因(GAL4 LUC)构建了哺乳动物细胞转录激活系统 ,并利用该系统定位了FHL2的转录激活结构域。首先将GAL4 DBD序列以正确读框插入到pcDNA3载体的多克隆位点中 ,构建成真核表达载体pDBD ,再将野生型FHL2及其不同片段以正确读框与pDBD中GAL4 DBD序列融合 ,构建成野生型FHL2及其缺失突变体表达载体。将这些表达载体分别瞬时转染 2 93T胚胎肾细胞 ,野生型FHL2及其缺失突变体都得到了表达。利用GAL4 荧光素酶报告基因对野生型FHL2及其不同突变体的转录激活活性检测表明 ,在 2 93T胚胎肾细胞和乳腺癌MCF 7细胞中 ,野生型FHL2具有转录激活活性 ,缺失N端半个LIM结构域使FHL2转录激活活性降低 ,缺失C末端第二个LIM结构域对FHL2的转录激活功能影响不大 ,缺失C末端最后一个LIM结构域则使FHL2的转录激活功能完全丧失 ,而C末端缺失 2个LIM结构域使FHL2转录激活活性又有所恢复。这说明FHL2C末端最后一个LIM结构域对其转录激活功能是必需的 ,而C末端第二个LIM结构域可能对FHL2的转录激活功能有负调控作用 ,这种负调控作用取决于  相似文献   

8.
Containing four LIM domains and an N-terminal half LIM domain, FHL2 has been predicted to have an adaptor function in the formation of higher order molecular complexes in the nucleus and the cytoplasm of cells. We expressed recombinant FHL2 in insect cells using the baculovirus system and used it to isolate direct or indirect interaction partners from the cytosolic fraction of fibroblasts by affinity chromatography. These were identified by their peptide mass fingerprints using MALDI-TOF mass spectrometry. Cytoskeleton-associated proteins present among the bound proteins were shown to co-localise with FHL2 in cell lamellipodia by indirect immunofluorescence staining.  相似文献   

9.
Using a yeast two-hybrid library screen, we have identified that the heart specific FHL2 protein, four-and-a-half LIM protein 2, interacted with human DNA-binding nuclear protein, hNP220. Domain studies by the yeast two-hybrid interaction assay revealed that the second LIM domain together with the third and the fourth LIM domains of FHL2 were responsible to the binding with hNP220. Using green fluorescent protein (GFP)-FHL2 and blue fluorescent protein (BFP)-hNP220 fusion proteins co-expressed in the same cell, we demonstrated a direct interaction between FHL2 and hNP220 in individual nucleus by two-fusion Fluorescence Resonance Energy Transfer (FRET) assay. Besides, Western blot analysis using affinity-purified anti-FHL2 antipeptide antibodies confirmed a 32-kDa protein of FHL2 in heart only. Virtually no expression of FHL2 protein was detected in brain, liver, lung, kidney, testis, skeletal muscle, and spleen. Moreover, the expression of FHL2 protein was also detectable in the human diseased heart tissues. Our results imply that FHL2 protein can shuttle between cytoplasm and nucleus and may act as a molecular adapter to form a multicomplex with hNP220 in the nucleus, thus we speculate that FHL2 may be particularly important for heart muscle differentiation and the maintenance of the heart phenotype.  相似文献   

10.
11.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   

12.
13.
In the yeast two-hybrid library screening, the heart-specific FHL2 protein was found to interact with hCDC47. In vitro interaction study between FHL2 protein and hCDC47 was demonstrated. From the results of domain studies by the yeast two-hybrid assay, the second and third LIM domains in conjunction with the first half LIM domain of FHL2 were identified to be important in binding with hCDC47. Besides, in Northern blot hybridization of human cancer cell lines, the highest FHL2 mRNA expression was detected in colorectal adenocarcinoma SW480 and HeLa cell S3. Our results imply that FHL2 protein may associate with cancer development and may act as a molecular adapter to form a multicomplex with hCDC47 in the nucleus, thus it plays an important role in the specification or maintenance of the terminal differentiated phenotype of heart muscle cells.  相似文献   

14.
ADAM-17 is a metalloprotease-disintegrin responsible for the ectodomain shedding of several transmembrane proteins. Using the yeast two-hybrid system, we showed that ADAM-17 interacts with the Four and Half LIM domain 2 protein (FHL2), a LIM domain protein that is involved in multiple protein-protein interaction. We demonstrated that this interaction involved the amino-acid sequence of ADAM-17 from position 721 to739. In the cardiomyoblast cells H9C2, ADAM-17 and FHL2 colocalize with the actin-based cytoskeleton and we showed that FHL2 binds both ADAM-17 and the actin-based cytoskeleton. We found that mainly the mature form of ADAM-17 associates with the cytoskeleton, although the maturation of ADAM-17 by furin is not necessary for its binding to the cytoskeleton. Interestingly, less ADAM-17 was detected at the surface of wild-type mouse macrophages compared to FHL2 deficient macrophages. However, wild-type cells have a higher ability to release ADAM-17 substrates under PMA stimulation. Altogether, these results demonstrate a physical and functional interaction between ADAM-17 and FHL2 that implies that FHL2 has a role in the regulation of ADAM-17.  相似文献   

15.
Four and a half LIM domain protein 3 (FHL3) is a member of the family of LIM proteins and is involved in myogenesis, cytoskeleton reconstruction, cell growth and differentiation. The full-length FHL3 cDNA was cloned from human spleen cDNA library and inserted in a prokaryotic expression vector pBV220 and then the recombinant plasmid was transformed into E. coli JM109. The expression of the recombinant protein was induced at 42°C. SDS-PAGE analysis showed that recombinant human FHL3 (rhFHL3) was mainly expressed as an inclusion body. After purification by HisTrap FF crude, the rhFHL3 was renatured by dialysis against renaturing buffer and identified by Western blot analysis using human FHL3 polyclonal antibody. The MTT assay showed that the purified rhFHL3 could inhibit HepG2 cell growth but promote the proliferation of ECV304 cells. In addition, the expression of angiogenin (Ang) gene was increased when ECV304 cells were pretreated with rhFHL3.  相似文献   

16.
FHL1, FHL2, and FHL3 are members of the four and one-half LIM domain protein subclass that are expressed in striated muscles. Here we show that FHL2 and FHL3 are novel alpha(7)beta(1) integrin-interacting proteins. They bind both the alpha- and the beta-subunit as well as different splice isoforms. The minimal binding sites for FHL2 and FHL3 on beta(1A)-chain overlap, whereas on alpha(7A) and alpha(7B) subunits they are situated adjacent. Determining the binding sites for integrins on FHL2 or FHL3 revealed that the suprastructure of the whole molecule is important for these associations, rather than any single LIM domain. Immunofluorescence studies with cells expressing full-length FHL proteins or their deletion mutants showed that FHL2 and FHL3 but not FHL1 colocalize with integrins at cell adhesion sites. Further, their recruitment to the membrane results from binding to either the alpha- or the beta-chain of the integrin receptor. The association of FHL2 or FHL3 with integrin receptors neither influences attachment of cells to different substrates nor changes their migration capacity. However, in cardiac and skeletal muscles, FHL2 and FHL3, respectively, are colocalized with alpha(7)beta(1) integrin receptor at the periphery of Z-discs, suggesting a role in mechanical stabilization of muscle cells.  相似文献   

17.
Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation   总被引:19,自引:0,他引:19  
Yang Y  Hou H  Haller EM  Nicosia SV  Bai W 《The EMBO journal》2005,24(5):1021-1032
  相似文献   

18.
Four and a half LIM domain protein 3 (FHL3) is a member of the FHL protein family that plays roles in the regulation of cell survival, cell adhesion and signal transduction. However, the mechanism of action for FHL3 is not yet clear. The aim of present study was to identify novel binding partner of FHL3 and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, FHL3 was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Methionine-1X was identified as a novel FHL3 binding partner. The interaction between FHL3 and the full length MT-1X was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore,the result demonstrated that MT-1X knockdown promoted the FHL3-induced inhibitory effect on HepG2 cells by regulating FHL3-mediated Smad signaling and involving in the modulation the expression of G2/M phase-related proteins through interaction with FHL3. These findings suggest that functional interactions between FHL3 and MT-1X may provide some clues to the mechanisms of FHL3-regulated cell proliferation.  相似文献   

19.
LIM domain proteins are found to be important regulators in cell growth, cell fate determination, cell differentiation, and remodeling of the cell cytoskeleton. Human Four-and-a-half LIM-only protein 2 (FHL2) is expressed predominantly in human heart and is only slightly expressed in skeletal muscle. Since FHL2 is an abundant protein in human heart, it may play an important role in the regulation of cell differentiation and myofibrillogenesis of heart at defined subcellular compartment. Therefore, we hypothesized that FHL2 act as a multi-functional protein by the specific arrangement of the LIM domains of FHL2 and that one of the LIM domains of FHL2 can function as an anchor and localizes it into a specific subcellular compartment in a cell type specific manner to regulate myofibrillogenesis. From our results, we observed that FHL2 is localized at the focal adhesions of the C2C12, H9C2 myoblast as well as a nonmyogenic cell line, HepG2 cells. Colocalization of vinculin-CFP and FHL2-GFP at focal adhesions was also observed in cell lines. Site-directed mutagenesis, in turn, suggested that the second LIM domain-LIM2 is essential for its specific localization to focal adhesions. Moreover, FHL2 was observed along with F-actin and focal adhesion of C2C12 and H9C2 myotubes. Finally, we believe that FHL2 moves from focal adhesions and then stays at the Z-discs of terminally differentiated heart muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号