首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enterocyte brush border of the small intestine is a highly specialized membrane designed to function both as a high capacity digestive/absorptive surface of dietary nutrients and a permeability barrier towards lumenal pathogens. It is characterized by an unusually high content of glycolipids (∼30% of the total microvillar membrane lipid), enabling the formation of liquid ordered microdomains, better known as lipid rafts. The glycolipid rafts are stabilized by galectin-4, a 36 kDa divalent lectin that cross-links galactosyl (and other carbohydrate) residues present on membrane lipids and several brush border proteins, including some of the major hydrolases. These supramolecular complexes are further stabilized by intelectin, a 35 kDa trimeric lectin that also functions as an intestinal lactoferrin receptor. As a result, brush border hydrolases, otherwise sensitive to pancreatic proteinases, are protected from untimely release into the gut lumen. Finally, anti-glycosyl antibodies, synthesized by plasma cells locally in the gut, are deposited on the brush border glycolipid rafts, protecting the epithelium from lumenal pathogens that exploit lipid rafts as portals for entry to the organism.  相似文献   

2.
Polarized epithelial cells of multicellular organisms confront the environment with a highly specialized apical cell membrane that differs in composition and function from that facing the internal milieu. In the case of absorptive cells, such as the small intestinal enterocyte and the kidney proximal tubule cell, the apical cell membrane is formed as a brush border, composed of regular, dense arrays of microvilli. Hydrolytic ectoenzymes make up the bulk of the microvillar membrane proteins, endowing the brush border with a huge digestive capacity. Several of the major enzymes are localized in lipid rafts, which, for the enterocyte in particular, are organized in a unique fashion. Glycolipids, rather than cholesterol, together with the divalent lectin galectin-4, define these rafts, which are stable and probably quite large. The architecture of these rafts supports a digestive/absorptive strategy for nutrient assimilation, but also serves as a portal for a large number of pathogens. Caveolae are well-known vehicles for internalization of lipid rafts, but in the enterocyte brush border, binding of cholera toxin is followed by uptake via a clathrin-dependent mechanism. Recently, 'anti-glycosyl' antibodies were shown to be deposited in the enterocyte brush border. When the antibodies were removed from the membrane, other carbohydrate-binding proteins, including cholera toxin, increased their binding to the brush border. Thus, anti-glycosyl antibodies may serve as guardians of glycolipid-based rafts, protecting them from lumenal pathogens and in this way be part of an ongoing 'cross-talk' between indigenous bacteria and the host.  相似文献   

3.
Synthesis and deposition of immunoglobulins in the brush border was studied in organ-cultured pig small intestinal mucosal explants. Surprisingly, comparable amounts of IgM and IgA were synthesized during a 6-h pulse, and also newly made IgG was detected in media and explants, including the microvillar fraction. For IgA and IgM, this subcellular distribution is consistent with basolateral-to-apical transcytosis, mediated by the polymeric immunoglobulin receptor. IgG is a ligand for the Fc receptor FcRn, and beta2-microglobulin, the light chain of FcRn, coclustered in immunogold double labeling with IgG in subapical endosomes and in the basolateral membrane of enterocytes. In addition, beta2-microglobulin was copurified with IgG on protein G-Sepharose. Apical endocytosis of IgG, as judged by internalization of fluorescent protein G, was not detectable except in a few isolated cells. This suggests that IgG in the adult small intestine is transported across the enterocyte mainly in the basolateral to apical direction. Significant fractions of all immunoglobulins bound to lactoseagarose, indicating that "anti-glycosyl" antibodies, raised against commensal gut bacteria, are synthesized locally in the small intestine. By partial deposition in the brush border, these antibodies therefore may have a protective function by preventing lectin-like pathogens from gaining access to the brush border surface.  相似文献   

4.
The brush border of pig small intestine is a local hotspot for β-galactoside-recognizing lectins, as evidenced by its prominent labeling with fluorescent lectin PNA. Previously, galectins 3-4, intelectin, and lectin-like anti-glycosyl antibodies have been localized to this important body boundary. Together with the membrane glycolipids these lectins form stable lipid raft microdomains that also harbour several of the major digestive microvillar enzymes. In the present work, we identified a lactose-sensitive 14-kDa protein enriched in a microvillar detergent resistant fraction as galectin-2. Its release from closed, right-side-out microvillar membrane vesicles shows that at least some of the galectin-2 resides at the lumenal surface of the brush border, indicating that it plays a role in the organization/stabilization of the lipid raft domains. Galectin-2 was released more effectively from the membrane by lactose than was galectin-4, and surprisingly, it was also released by the noncanonical disaccharides sucrose and maltose. Furthermore, unlike galectin-4, galectin-2 was preferentially coimmunoisolated with sucrase-isomaltase rather than with aminopeptidase N. Together, these results show that the galectins are not simply redundant proteins competing for the same ligands but rather act in concert to ensure an optimal cross-linking of membrane glycolipids and glycoproteins. In this way, they offer a maximal protection of the brush border against exposure to bile, pancreatic enzymes and pathogens.  相似文献   

5.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

6.
The small intestinal brush border has an unusually high proportion of glycolipids which promote the formation of lipid raft microdomains, stabilized by various cross-linking lectins. This unique membrane organization acts to provide physical and chemical stability to the membrane that faces multiple deleterious agents present in the gut lumen, such as bile salts, digestive enzymes of the pancreas, and a plethora of pathogens. In the present work, we studied the constitutive endocytosis from the brush border of cultured jejunal explants of the pig, and the results indicate that this process functions to enrich the contents of lipid raft components in the brush border. The lipophilic fluorescent marker FM, taken up into early endosomes in the terminal web region (TWEEs), was absent from detergent resistant membranes (DRMs), implying an association with non-raft membrane. Furthermore, neither major lipid raft-associated brush border enzymes nor glycolipids were detected by immunofluorescence microscopy in subapical punctae resembling TWEEs. Finally, two model raft lipids, BODIPY-lactosylceramide and BODIPY-GM1, were not endocytosed except when cholera toxin subunit B (CTB) was present. In conclusion, we propose that constitutive, selective endocytic removal of non-raft membrane acts as a sorting mechanism to enrich the brush border contents of lipid raft components, such as glycolipids and the major digestive enzymes. This sorting may be energetically driven by changes in membrane curvature when molecules move from a microvillar surface to an endocytic invagination.  相似文献   

7.
Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p < or = 0.01) than that of vesicles captured by anti-galectin-4 beads, 2) subpopulations of vesicles labeled by only one of the two antibodies were preferentially captured by beads coated with the respective antibody (p < or = 0.01), 3) the average diameter of "galectin-4 positive only" vesicles was smaller than that of vesicles labeled for lactase. Surprisingly, pretreatment with methyl-beta-cyclodextrin, which removed >70% of microvillar cholesterol, did not affect the microdomain localization of galectin-4. We conclude that stable, cholesterol-independent raft microdomains exist in the enterocyte brush border.  相似文献   

8.
Monoclonal antibodies (mAb) were generated as probes for the plasma membrane domains of pancreatic acinar cells. Primary monolayer cultures of mouse pancreatic acinar cells, which have an expanded apical surface relative to normal pancreas, were used to immunize rats. With conventional immunization and fusion protocols, 3% of the hybridomas were positive against the acinar lumen by indirect immunofluorescence of mouse pancreas cryosections. Culturing of spleen cells from an immunized rat on the apical surface of acinar cell monolayer cultures before fusion with the myeloma (an in vitro boost) doubled the percentage of hybridomas producing apical membrane-specific mAb. Monoclonal antibodies were characterized by immunofluorescence, ultrastructural immunoperoxidase cytochemistry, immunoprecipitation, and immunoblotting. One antibody, acinar-1 (IgG2a), labeled the apical membranes of pancreatic acinar cells, hepatocytes, salivary and lacrimal gland acinar cells, and the brush border of small intestine enterocytes. This mAb precipitated and blotted a protein of 94 KD. Acinar-2 (IgM) also labeled pancreatic acinar cell apical membranes but did not label other tissues and did not precipitate or blot. Acinar-3 labeled pancreatic acinar cell lateral membranes. Duct-1 (IgM) labeled pancreatic duct apical membrane and ducts in liver and salivary glands but did not precipitate or blot. These domain-specific mAb demonstrate that common antigenic determinants occur in the apical surfaces of several exocrine epithelia and may be important in secretion.  相似文献   

9.
Abstract

Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft microdomains of the brush border.  相似文献   

10.
Free fatty acids released during intralumenal digestion of dietary fat must pass through the enterocyte brush border membrane before triacylglycerol reassembly and subsequent chylomicron delivery to the lymph system. In the present work fluorescent BODIPY fatty acid analogs were used to study this membrane passage in organ cultured intestinal mucosal explants. We found that in addition to a rapid uptake into the cytoplasm, a fraction of the fatty acid analogs were inserted directly into the brush border membrane. Furthermore, a brief exposure of microvillar membrane vesicles to a fat mixture mimicking a physiological solution of dietary mixed micelles, rearranged the lipid raft microdomain organization of the membranes. Thus, the fat mixture generated a low-density subpopulation of microvillar detergent resistant membranes (DRMs) highly enriched in alkaline phosphatase (AP). Since this GPI-linked enzyme is the membrane protein in the brush border with the highest affinity for lipid rafts, this implies that free fatty acids selectively insert stably into these membrane microdomains. We have previously shown that absorption of dietary lipids transiently induce a selective endocytosis of AP from the brush border, and from work by others it is known that fat absorption is accompanied by a rise in serum AP and secretion of surfactant-like particles from enterocytes. We propose that these physiological processes may be triggered by the sequestering of dietary free fatty acids in lipid raft microdomains of the brush border.  相似文献   

11.
By photoaffinity labeling of brush border membrane vesicles from rabbit small intestine with photoreactive derivatives of beta-lactam antibiotics and dipeptides, a binding protein for dipeptides and beta-lactam antibiotics with an apparent molecular weight of 127,000 was labeled. The labeled 127 kDa polypeptide could be solubilized with the non-ionic detergents Triton X-100, n-octyl glucoside or CHAPS. If the vesicles were solubilized prior to photoaffinity labeling, no clear incorporation of radioactivity into the 127 kDa polypeptide occurred indicating a loss of binding ability upon solubilization. By affinity chromatography of solubilized brush border membrane proteins on an agarose wheat germ lectin column, the binding protein for dipeptides and beta-lactam antibiotics of Mr 127,000 was retained on the column. With N-acetyl-D-glucosamine the photolabeled binding protein for beta-lactam antibiotics and dipeptides was eluted together with the brush border membrane-bound enzyme aminopeptidase N. Separation from aminopeptidase N and final purification was achieved by anion-exchange chromatography on DEAE-sephacel. Polyclonal antibodies against the purified binding protein were raised in guinea pigs. The photolabeled 127 kDa protein could be precipitated from solubilized brush border membranes with these antibodies. Incubation of brush border membrane vesicles with antiserum prior to photoaffinity labeling significantly reduced the extent of labeling of the 127 kDa protein. Treatment of brush border membrane vesicles with antiserum significantly inhibited the efflux of the alpha-aminocephalosporin cephalexin from the brush border membrane vesicles compared to vesicles treated with preimmune serum. These studies indicate that the binding protein for dipeptides and beta-lactam antibiotics of apparent molecular weight 127,000 in the brush border membrane of rabbit small intestinal enterocytes is directly involved in the uptake process of small peptides and orally active beta-lactam antibiotics across the enterocyte brush border membrane.  相似文献   

12.
The assembly of the intestinal microvillus cytoskeleton was examined during the differentiation of enterocytes along the crypt-villus axis in adult chicken duodenum using light and electron microscopic immunolocalization techniques. Using antibodies reactive with villin, fimbrin, and the heavy chain (hc) of brush border (BB) myosin I (110K-calmodulin complex) and rhodamine-conjugated phalloidin as a probe for F-actin, we determined that while actin, villin, and fimbrin were all localized apically along the entire axis, BB myosin I (hc) did not assume this localization until the crypt-villus transition zone. In addition to their localization at the BB surface, all four proteins were present at significant levels along the lateral margins of enterocytes along the entire crypt-villus axis, suggesting that these proteins may be involved in the organization and function of the basolateral membrane cytoskeleton as well. The pattern of expression of the microvillar core proteins along the crypt-villus axis in the adult was comparable to that seen in the intestine of the late stage chicken embryo and suggests that a common program for brush border assembly may be used in both modes of enterocyte differentiation.  相似文献   

13.
The aim of this study was to investigate the in vitro role of the complement membrane attack complex (MAC) in the injury induced by nephritogenic anti-brush border vesicle (Fx1A) antibodies on rat glomerular visceral epithelial cells (GEC). Both sheep and rabbit anti-rat brush border vesicle IgG-induced complement-dependent lysis of cultured GEC. Fab fragments of sheep anti-rat brush border vesicles and polyclonal or monoclonal gp330 IgG were devoid of lytic activity. Shedding of cell-surface antigens induced by sheep or rabbit anti-rat brush border vesicle IgG protected GEC from subsequent exposure to lytic antibodies and complement, an effect that was not obtained with Fab fragments. When GEC were incubated with sheep or rabbit anti-rat brush border vesicle IgG in capping conditions, the C3 component was co-redistributed with Heymann immune complexes; in contrast, the MAC remained diffusely bound to the cell surface, indicating that it was not associated with the antigen-antibody complexes. The MAC was demonstrated on the surface of GEC by immunofluorescence staining with anti-MAC neoantigen and by electron microscopy of negatively stained membranes showing focal clusters of 110 A MAC lesions. When GEC were treated with sheep IgG or rabbit IgG plus C6-deficient sera, the cells were not lysed and MAC was not demonstrable on the surface; however, lytic activity was restored when C6-deficient sera were reconstituted with purified C6. The results are consistent with the interpretation that injury induced by Heymann antibodies on GEC is MAC-dependent.  相似文献   

14.
Brush borders were prepared from pig intestinal mucosa and the membrane proteins solubilized with either Triton X-100 or papain. Proteins, thus released, were used as antigens to raise antisera in rabbits. The immunoglobulin G fractions were isolated and shown by the double layer immunofluorescence staining technique to react only with the brush border region of the enterocyte. The antibodies obtained were used in immunoelectrophoretic studies on the brush border proteins. Eight hydrolytic activities were identified by the use of histo-chemical staining methods. These were the microsomal aminopeptidase (EC 3.4.11.2), aspartate aminopeptidase (EC 3.4.11.7), dipeptidyl peptidase IV (EC 3.4.14.X), lactase (EC 3.2.1.23), glucoamylase (EC 3.2.1.3), sucrase (EC 3.2.1.48), isomaltase (EC 3.2.1.10) and alkaline phosphatase (EC 3.1.3.1). In addition, at least four faint immunoprecipitates were formed but none of these were identified.  相似文献   

15.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

16.
Brush border membrane vesicles prepared from rabbit small intestine are essentially free of basolateral membranes and nuclear, mitochondrial, microsomal and cytosolic contaminants. The resulting brush border membrane is unstable due to intrinsic lipases and proteinases. The PC transfer between small unilamellar lipid vesicles or mixed lipid micelles as the donor and the brush border membrane vesicles as the acceptor is protein-mediated. After proteolytic treatment of brush border membrane with papain or proteinase K the PC transfer activity is lost and the kinetics of PC uptake are similar to those measured with erythrocytes under comparable conditions. Evidence is presented to show that the PC transfer activity resides in the apical membrane of the enterocyte and not in the basolateral part of the plasma membrane. Furthermore, the activity is localized on the external surface of the brush border membrane exposed to the aqueous medium with its active centre probably not in direct contact with the lipid bilayer of the membrane. Proteins released from brush border membrane by proteolytic treatment catalyze PC exchange between different populations of small unilamellar vesicles. Furthermore, these protein(s) bind(s) PC forming a PC-protein complex.  相似文献   

17.

Background

Brush border microvilli are ∼1-µm long finger-like projections emanating from the apical surfaces of certain, specialized absorptive epithelial cells. A highly symmetric hexagonal array of thousands of these uniformly sized structures form the brush border, which in addition to aiding in nutrient absorption also defends the large surface area against pathogens. Here, we present a molecular model of the protein cytoskeleton responsible for this dramatic cellular morphology.

Methodology/Principal Findings

The model is constructed from published crystallographic and microscopic structures reported by several groups over the last 30+ years. Our efforts resulted in a single, unique, self-consistent arrangement of actin, fimbrin, villin, brush border myosin (Myo1A), calmodulin, and brush border spectrin. The central actin core bundle that supports the microvillus is nearly saturated with fimbrin and villin cross-linkers and has a density similar to that found in protein crystals. The proposed model accounts for all major proteinaceous components, reproduces the experimentally determined stoichiometry, and is consistent with the size and morphology of the biological brush border membrane.

Conclusions/Significance

The model presented here will serve as a structural framework to explain many of the dynamic cellular processes occurring over several time scales, such as protein diffusion, association, and turnover, lipid raft sorting, membrane deformation, cytoskeletal-membrane interactions, and even effacement of the brush border by invading pathogens. In addition, this model provides a structural basis for evaluating the equilibrium processes that result in the uniform size and structure of the highly dynamic microvilli.  相似文献   

18.
Intestinal cholesterol absorption is an important regulator of serum cholesterol levels. Ezetimibe is a specific inhibitor of intestinal cholesterol absorption recently introduced into medical practice; its mechanism of action, however, is still unknown. Ezetimibe neither influences the release of cholesterol from mixed micelles in the gut lumen nor the transfer of cholesterol to the enterocyte brush border membrane. With membrane-impermeable Ezetimibe analogues we could demonstrate that binding of cholesterol absorption inhibitors to the brush border membrane of small intestinal enterocytes from the gut lumen is sufficient for inhibition of cholesterol absorption. A 145-kDa integral membrane protein was identified as the molecular target for cholesterol absorption inhibitors in the enterocyte brush border membrane by photoaffinity labeling with photoreactive Ezetimibe analogues (Kramer, W., Glombik, H., Petry, S., Heuer, H., Schafer, H. L., Wendler, W., Corsiero, D., Girbig, F., and Weyland, C. (2000) FEBS Lett. 487, 293-297). The 145-kDa Ezetimibe-binding protein was purified by three different methods and sequencing revealed its identity with the membrane-bound ectoenzyme aminopeptidase N ((alanyl)aminopeptidase; EC 3.4.11.2; APN; leukemia antigen CD13). The enzymatic activity of APN was not influenced by Ezetimibe (analogues). The uptake of cholesterol delivered by mixed micelles by confluent CaCo-2 cells was partially inhibited by Ezetimibe and nonabsorbable Ezetimibe analogues. Preincubation of confluent CaCo-2 cells with Ezetimibe led to a strong decrease of fluorescent APN staining with a monoclonal antibody in the plasma membrane. Independent on its enzymatic activity, aminopeptidase N is involved in endocytotic processes like the uptake of viruses. Our findings suggest that binding of Ezetimibe to APN from the lumen of the small intestine blocks endocytosis of cholesterol-rich membrane microdomains, thereby limiting intestinal cholesterol absorption.  相似文献   

19.
Novel Bacillus thuringiensis subsp. israelensis (Bti) Cry4Ba toxin-binding proteins have been identified in gut brush border membranes of the Aedes (Stegomyia) aegypti mosquito larvae by combining 2-dimensional gel electrophoresis (2DE) and ligand blotting followed by protein identification using mass spectrometry and database searching. Three alkaline phosphatase isoforms and aminopeptidase were identified. Other Cry4Ba binding proteins identified include the putative lipid raft proteins flotillin and prohibitin, V-ATPase B subunit and actin. These identified proteins might play important roles in mediating the toxicity of Cry4Ba due to their location in the gut brush border membrane. Cadherin-type protein was not identified, although previously, we identified a midgut cadherin AgCad1 as a putative Cry4Ba receptor in Anopheles gambiae mosquito larvae [Hua, G., Zhang, R., Abdullah, M.A., Adang, M.J., 2008. Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity. Biochemistry 47, 5101–5110]. Other identified proteins in this study that might have lesser roles include mitochondrial proteins such as ATP synthase subunits, mitochondrial processing peptidase and porin; which are likely contaminants from mitochondria and are not brush border membrane components. Trypsin-like serine protease was also identified as a protein that binds Cry4Ba. Identification of these toxin-binding proteins will lead to a better understanding of the mode of action of this toxin in mosquito.  相似文献   

20.
In this paper we show that although immunoglobulins are easily precipitated in solutions containing polyethylene glycol (PEG), especially at pH's where the conformation of the proteins should be close to native, human and rabbit IgG can be solubilized in aqueous dextran/PEG two-phase systems containing glycine and sodium chloride at pH 7.0 and that human IgA and IgM can be solubilized in such systems if the pH is increased to 9.0. Liquid-liquid partition chromatography (LLPC) on Li-ParGel was used to separate immunoglobulins into subfractions. Human IgG, IgM, and IgA all gave three peaks in the system used. These results indicate the possibility of separating different classes of immunoglobulins with this method. Specific IgG antibodies isolated from a rabbit antiserum against human serum proteins gave only two peaks in the LLPC system while the total IgG population gave three, as did human IgG. Thus, partitioning of immunoglobulins seems to be related to antibody activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号