首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of Ca2+ on steroid production was examined in electropermeabilized bovine adrenal zona glomerulosa and fasciculata cells. The cells were superfused with a medium mimicking cytosolic ionic content but deprived of Ca2+. The permeabilized glomerulosa cells produced aldosterone at a low basal rate. Upon addition of NADP+ to the medium, a transient and concentration-dependent (EC50 = 6 microM) peak of aldosterone production occurred. When the superfusion medium was supplemented with buffered Ca2+ at submicromolar concentrations, a concentration-dependent and sustained increase of aldosterone output was observed. The maximal response (2-3 times the basal secretion rate) was achieved with 1-2 microM ambient free Ca2+, and the EC50 for Ca2+ was 0.5 microM. The continuous presence of NADP+ was found to be necessary for a Ca2+ effect. The Ca2+-induced aldosterone response was entirely blocked by ruthenium red (1 microM), an inhibitor of mitochondrial Ca2+ uptake, and by W-7 (5 microM), a calmodulin inhibitor. Qualitatively and quantitatively similar results were obtained for corticosterone production in adrenal fasciculata cells. These results show that permeabilized adrenal cortical cells retain the ability to produce steroids. Moreover, Ca2+ influx into the mitochondria and Ca2+/calmodulin-dependent reactions appear to be critical steps in the activation of steroidogenesis. These studies provide a further direct link between cytosolic free calcium concentration and biological responses induced by steroidogenic, calcium-mobilizing stimulators in the adrenal cortex.  相似文献   

3.
Mechanisms involved in the relaxation of bovine aortic endothelial cells   总被引:2,自引:0,他引:2  
The importance of endothelial cell contraction in the regulation of vascular biology is being increasingly recognized. Our group has demonstrated that reactive oxygen species, particularly hydrogen peroxide, which are released in pathological conditions such as ischemia-reperfusion, are able to induce contraction in bovine aortic endothelial cells (BAEC). The cGMP-dependent relaxation of contractile cells depends on the ability of the cyclic nucleotide to interfere with intracellular calcium; however, this is not the only mechanism involved. The present experiments were designed to analyse the mechanism by which cGMP induces relaxation in BAEC. Sodium nitroprusside (SNP), an activator of soluble guanylate cyclase, as well as atrial natriuretic (ANP) and C-type natriuretic (CNP) peptides, activators of particulate guanylate cyclase, blunted the hydrogen peroxide-induced contraction of BAEC and myosin light chain phosphorylation. The inhibitory effect was more marked with SNP and CNP than with ANP, and the action of SNP and CNP were partially reversed by blocking soluble and particulate guanylate cyclases, respectively. Dibutyryl cGMP (db-cGMP), a cGMP analogue, mimicked the effect of SNP and CNP. Cyclic GMP-dependent protein kinase (cGK) protein levels and activity were measured. Hydrogen peroxide induced a significant reduction in cGK activity without any change in protein level. This effect was completely reversed by preincubation with db-cGMP. Calyculin A, a myosin light chain phosphatase inhibitor, prevented the cGMP-induced relaxation of BAEC. SNP, CNP and db-cGMP also partially prevented the hydrogen peroxide-induced increase in intracellular calcium levels. Catalase completely blocked this effect. In summary, the present results support a role for those metabolites which activate guanylate cyclases in the relaxation of BAEC, and suggest that the cGMP-induced BAEC relaxation could be due, at least partially, to the stimulation of cGK and/or myosin light chain phosphatase activity, and to calcium blockade.  相似文献   

4.
Iyo T  Sasaki N  Maki Y  Nakata M 《Biorheology》2006,43(2):117-132
In 1993 we proposed an empirical formula for describing the relaxation modulus of cortical bone based on the results of stress relaxation experiments performed for 1 x 10(5) sec: [E(t) = E0{A exp[ -(t/tau1)beta] + (1 - A) exp(-t/tau2)}, (0 < A, beta <1 and tau1 < tau2) where E0 is the initial value of the relaxation modulus, A is the portion of the first term, tau1 and tau2 are characteristic relaxation times, and beta is a shape factor [Sasaki et al., J. Biomechanics 26 (1993), 1369]. Although the relaxation properties of bone under various external conditions were described well by the above equation, recent experimental results have indicated some limitations in its application. In order to construct an empirical formula for the relaxation modulus of cortical bone that has a high degree of completeness, stress relaxation experiments were performed for 6 x 10(5) seconds. The second term in the equation was determined as an apparently linear portion in a log E(t) vs t plot at t>1 x 10(4) sec. The same plot for experiments performed for 6 x 10(5) seconds revealed that the linear portion corresponding to the second term was in fact a curve with a large radius of curvature. On the basis of this fact, we proposed a second improved empirical equation E(t) = E0{A exp [ -(t/tau1)beta] + (1 - A) exp[-(t/tau2)gamma]}, (0相似文献   

5.
6.
Hypoxia relaxes endothelium-denuded bovine coronary arteries (BCA) through mechanisms that do not appear to involve reactive oxygen species, prostaglandins, or nitric oxide. Because of similarities in the relaxation of BCA to hypoxia (Po(2) = 8-10 Torr) and inhibitors of the pentose phosphate pathway (PPP) including 6-aminonicotinamide and epiandrosterone, we measured NADPH and NADP and found that hypoxia caused NADPH oxidation (decreased NADPH/NADP). The relaxation to hypoxia was similar to previously reported properties of relaxation to PPP inhibitors in that both responses were associated with glutathione oxidation and depressed intracellular calcium release and calcium influx-mediated contractile responses. Inhibitors of potassium channels had minimal effects on these relaxation responses. Relaxation to hypoxia and PPP inhibitors were attenuated by a thiol reductant (3 mM dithiothreitol) and by eliciting contraction with an activator of protein kinase C (phorbol 12,13-dibutyrate). In the presence of contraction to U-46619, relaxation to hypoxia and PPP inhibitors were attenuated by the sarco(endo)plasmic reticulum Ca(2+)-ATPase pump inhibitor 200 microM cyclopiazonic acid and by 10 mM pyruvate. Hypoxia decreased BCA levels of glucose-6-phosphate but not ATP. Pyruvate prevented the hypoxia-elicited decrease in glucose-6-phosphate and glutathione oxidation, and it increased NADPH levels under hypoxia to levels observed under normoxia. Thus hypoxia causes a metabolic stress on the PPP that promotes BCA relaxation through processes controlled by lowering the levels of cytosolic NADPH.  相似文献   

7.
8.
9.
We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.5% and EC(50) of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 microM), NS-398 (10 microM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 muM), nordihydroguaiaretic acid (NDGA; 1 microM), and ebselen (1 microM). HPLC analysis showed that [(14)C]AA was metabolized by mesenteric arteries to PGI(2), PGE(2), THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI(2) and PGE(2) was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI(2), PGE(2), and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K(+) (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.  相似文献   

10.
11.
Prolonged isometric relaxation in hypertensive aortic and caudal arterial smooth muscle has been demonstrated; however, isobaric relaxation in resistance arteries is more pertinent to studies in hypertension. A comparative study of mesenteric arterial isobaric relaxation times was made using spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and MK-421 treated SHR (treatment commenced at 8 weeks of age and was maintained until sacrifice). Relaxation rates of vessels constricting against a range of pressures and achieving different degrees of narrowing or changes in circumference were analyzed. Comparisons were made between SHR, WKY, and MK-421 treated SHR arteries that had constricted from the same initial circumference and against the same magnitude of pressure. The SHR mesenteric arteries relaxed at a slower rate than did the WKY vessels. The normotensive MK-421 treated SHR showed the same prolonged relaxation rate as did the untreated SHR preparations. Thus the slower rate of relaxation in SHR arteries does not appear to be a consequence of the hypertension. Such prolonged time for narrowing would function to increase the average peripheral resistance and thus may contribute to the initiation and maintenance of increased blood pressure.  相似文献   

12.
Radioiodinated synthetic atrial natriuretic factor (ANF) bound to a single class of high affinity binding sites in the plasma membrane from bovine adrenal cortex with a KD of 7.4 X 10(-10) M. The binding affinities of related peptides showed close parallelism to their potencies in natriuretic and vasorelaxant activities. Incubation of adrenal membranes with radioiodinated 4-azidobenzoyl ANF or a similar derivative of its analogue followed by photolysis resulted in specific radiolabeling of a protein band in SDS gel electrophoresis with an apparent Mr of 124,000 in bovine or Mr of 126,000 in rat, which was abolished by inclusion of unmodified ANF in the incubation. Prevention of the labeling was dependent on the concentration of ANF and was not observed with atriopeptin I or with unrelated peptides, angiotensin II, ACTH or [Arg8] vasopressin. These results indicate specific covalent labeling of ANF-receptor or its subunit by the photoaffinity ligands.  相似文献   

13.
Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A2A and A3 receptor expression was observed in the arterial wall and A2A-immunoreactivity was identified in the adventitia–media junction and endothelium. A1 and A2B receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A2A antagonist, reduced NECA relaxations that were not modified by A1, A2B, and A3 receptor antagonists. Neuronal voltage-gated Ca2+ channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IKCa)- and small (SKCa)-conductance Ca2+-activated K+ channels. Inhibition of cyclooxygenase (COX), large-conductance Ca2+-activated-, ATP-dependent-, and voltage-gated-K+ channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A2A purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IKCa and SKCa channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.  相似文献   

14.
15.
Bovine adrenal cells were isolated from the subcapsular region of the gland to obtain cultures enriched in cells of the zona glomerulosa. The cells kept in primary cultures were shown to respond to angiotensin II and adrenocorticorticotropin (ACTH) by a significant increase in aldosterone production. These primary adrenal cultures were used to study the effect of angiotensin II on LDL metabolism. Addition of angiotensin II for 48 h to the culture medium resulted in a 200-300% increase in LDL metabolism, and the lowest effective concentration was 10(-8) -10(-9) M. The angiotensin II effect became evident after 12-16 h of incubation. To compare the metabolism of the 125I-labeled protein moiety to that of cholesteryl ester of LDL, the lipoprotein was labeled also with cholesteryl linoleyl ether, a nonhydrolyzable analog of cholesteryl ester. Under basal conditions and in the presence of angiotensin II or ACTH the ratio of [3H]cholesteryl linoleyl ether to 125I indicate some preferential uptake of the cholesteryl ester moiety. Stimulation of specific LDL binding at 4 degrees C and LDL metabolism at 37 degrees C by 10(-7) M angiotensin II occurred at all concentrations of LDL studied. Linearization of the kinetic data showed that angiotensin II increased the LDL receptor number significantly but not the affinity of the LDL receptor for its ligand. The present findings indicate that in analogy to ACTH, angiotensin II can influence receptor-mediated uptake of LDL by adrenal cortical cells. It remains to be shown whether the angiotensin II effect on LDL metabolism is limited to adrenal cells or will affect other cells which express the angiotensin II receptor.  相似文献   

16.
17.
We reported previously that acetylcholine (ACh)-induced endothelium-dependent relaxation of rat mesenteric microvessels depended both on nitric oxide (NO) and on a charybdotoxin (CTX)-sensitive endothelium-derived hyperpolarizing vasodilator. Cytochrome P450 (CYP)-dependent arachidonic acid metabolites act in some systems as hyperpolarizing vasodilators. We sought to quantitate contributions of such metabolites to the CTX-sensitive component of ACh-induced vasodilation in isolated rat mesenteric resistance arteries. ACh relaxed these vessels nearly completely (93.3+/-1.2%, n = 71); cyclooxygenase inhibition with indomethacin did not diminish this response (94.3+/-11.4%, n = 9). NO synthase inhibition with Nitro-L-arginine (NNLA) reduced relaxation by 30% (n = 54, p<0.05). Pretreatment of vessels with CYP inhibitors, either clotrimazole (CTM) or 17-octadecynoic acid (17-ODYA), or with selective K+ channel inhibitors, either tetraethyammonium acetate (TEA) or CTX, each led to similar small reductions in maximal relaxation (17%, 22%, 16%, and 9% respectively, n = 3-6). Combined pretreatment with NNLA + either (CTM or 17-ODYA) or (TEA or CTX) each led to similar maximal relaxations (52.2+/-4.8%, 50.6+/-9.2, 37.6+/-8.6%, and 44.1+/-11.5%, respectively, n = 6-35; p<0.05 for NNLA+[CTM or TEA or CTX] vs NNLA alone). Combined pretreatment with NNLA+CTM+(CTX or TEA) led to similar maximal relaxations (43.0+/-7.3%, 43.7+/-15%, n = 6-11) that did not differ from values in vessels pretreated with either NNLA+CTM or NNLA+(CTX or TEA). We conclude that the ACh-induced vasodilation was insensitive to cyclooxygenase inhibition, partially sensitive to NO synthase inhibition, and that the K+ channel blockers TEA and CTX identified the same minor component of ACh relaxation as did the CYP inhibitor CTM.  相似文献   

18.
The uptake and metabolism of [14C]cholesteryl ester in bovine LDL to cortisol and to cholesteryl ester was studied in monolayer cultures of bovine adrenal cortical cells over short time periods of up to 8 h. The experiments were designed to determine the intracellular pathway followed by the cholesterol derived from the LDL cholesteryl ester and how this is modified in the short term by the tropic hormone ACTH. The cells were cultured in the presence of mevinolin to remove the contribution of endogenous synthesis of cholesterol for supply of substrate for steroidogenesis. The specific activity of the cortisol secreted by the cells was measured under a variety of conditions. Control incubations showed a relatively steady specific activity in the cortisol secreted over an 8 h period. In the presence of ACTH the specific activity of the cortisol was significantly reduced for the first 2 h of the experiment. This is consistent with dilution of the [14C]cholesterol from the LDL with non-radioactive free cholesterol released from the intracellular stores of cholesteryl ester in the presence of ACTH. The inhibitor of acyl-CoA:cholesterol acyltransferase, Sandoz compound 58-035, increased the specific activity of the secreted cortisol in the absence of ACTH, indicating that much of the incoming cholesterol would normally be esterified but was here diverted to steroidogenesis. In the presence of ACTH this increase was observed only during the first 2 h of the experiment, after which inhibition of acyl-CoA:cholesterol acyltransferase had no effect on the specific activity of the cortisol. The adrenal cells were further fractionated into mitochondrial, lysosomal and microsomal plus cytosol fractions and the appearance of free and esterified cholesterol from the labelled LDL measured in these fractions over a period of up to 8 h. ACTH stimulated the uptake of LDL-cholesteryl ester into the cells and tended to increase the relative amounts of free cholesterol in the cells, consistent with its role in promoting supply of cholesterol for steroidogenesis. These experiments allow the roles of endogenous cholesteryl ester and lipoprotein-derived cholesteryl ester in the bovine adrenal cortical cells to be observed over a short time scale. They show that the cells make a substantial change in the internal flux of cholesterol in a short time after stimulation with ACTH and in these cultures the full expression of the presence of ACTH takes up to 2 h.  相似文献   

19.
Atrial natriuretic factor (ANF) rapidly enhanced phosphorylation of plasma membrane proteins of bovine adrenal cortical cells. Pretreatment of the membranes with ANF (1 x 10(-8)M to 1 x 10(-7)M) resulted two- to four-fold in an incorporation of 32p-radioactivity from [gamma -32p]ATP as compared to the controls. The guanosine 3', 5' monophosphate (cGMP) which has been considered a second messenger of ANF also enhanced the phosphorylation of several proteins which were stimulated by ANF. However, the phosphorylation of certain proteins was stimulated differentially only by either ANF or cGMP. These results suggest that ANF-induced protein phosphorylation may play a role in transmembrane signalling pathway involving other second messenger(s) in addition to cGMP during the biological action of ANF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号