首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane potentials of particles present in a subcellular brain preparation, called synaptoneurosomes, have been monitored by measurement of changes in the absorbance of a cyanine dye, DiS-C2-5. The membrane potential of the particles seems to be dependent on both Cl- and K+ diffusion potentials, as judged from dependence of the absorbance changes on the K+ equilibrium potential across the membrane in the presence of Ba2+ or when Cl- was replaced with gluconate. The apparent high Cl- permeability of the membrane preparation was reduced in the presence of picrotoxin, a finding suggesting endogenous activation of receptor-linked Cl- channels. Glutamate and kainate caused depolarization of the membranes present in the preparation. This effect was only seen if K+ channels had been blocked in the presence of Ba2+ or 4-aminopyridine. No responses were observed with other glutamate receptor agonists (quisqualate or N-methyl-D-aspartate). The membrane potential of particles present in conventional synaptosomal preparations neither had a high Cl- permeability nor reacted to glutamate or kainate in the present conditions. The results suggest that synaptoneurosome preparations may be used for functional studies on postsynaptic neurotransmitter receptor-linked membrane potential changes with optical probes of membrane potential.  相似文献   

2.
In basolateral membrane vesicles (BLMV) isolated from rat parotid glands, the initial rate of ATP-dependent Ca2+ transport, in the presence of KCl, was approx. 2-fold higher than that obtained with mannitol, sucrose or N-methyl-D-glucamine (NMDG)-gluconate. Only NH4+, Rb+, or Br- could effectively substitute for K+ or Cl-, respectively. This KCl activation was concentration dependent, with maximal response by 50 mM KCl. An inwardly directed KCl gradient up to 50 mM KCl had no effect on Ca2+ transport, while equilibration of the vesicles with KCl (greater than 100 mM) increased transport 15-20%. In presence of Cl-, 86Rb+ uptake was 2.5-fold greater than in the presence of gluconate. 0.5 mM furosemide inhibited 86Rb+ flux by approx. 60% in a Cl- medium and by approx. 20% in a gluconate medium. Furosemide also inhibited KCl activation of Ca2+ transport with half maximal inhibition either at 0.4 mM or 0.05 mM, depending on whether 45Ca2+ transport was measured with KCl (150 mM) equilibrium or KCl (150 mM) gradient. In a mannitol containing assay medium, potassium gluconate loaded vesicles had a higher (approx. 25%) rate of Ca2+ transport than mannitol loaded vesicles. Addition of valinomycin (5 microM) to potassium gluconate loaded vesicles further stimulated (approx. 30%) the Ca2+ transport rate. These results suggest that during ATP dependent Ca2+ transport in parotid BLMV, K+ can be recycled by the concerted activities of a K+ and Cl- coupled flux and a K+ conductance.  相似文献   

3.
Goblet cells in the midgut epithelium of the tobacco hornworm (Manduca sexta larva, 5th instar) actively secrete K+. This can be measured as short-circuit current (Isc) when the tissue is mounted in an Ussing chamber and bathed in K(+)-rich standard saline containing 32 mmol K+.l-1. Isc depends strictly on basolateral (i.e. haemolymph side) K+ and is therefore termed K+ current, IK. Basolateral, but not apical, chloride, bromide and iodide stimulate IK when compared to the baseline current recorded with gluconate-, nitrate- or thiocyanate-containing salines. So-called "Cl(-)-specific" transport inhibitors (frusemide, 9-anthracene carboxylic acid, diphenylamine carboxylic acid and 4,4'-diisothiocyana-to-stilbene-2,2'-disulphonic acid) reduce IK when added to the basolateral bath, whether Cl- or gluconate is the principal ambient anion. Cl- stimulates IK according to saturation kinetics. The Michaelis-Menten-type, K+ concentration-dependent, saturation of IK is altered in a highly specific manner when gluconate is replaced by Cl-: maximal K+ current, as well as the apparent Michaelis constant, are increased by a factor of 4. Since IK develops in these conditions exclusively via basolateral, Ba(2+)-blockable K+ channels, these results can be understood if it is assumed that haemolymph Cl- interferes with the K+ channel by simultaneously lowering the binding affinity for K+ ions and increasing their subsequent transfer rate across the basolateral goblet cell membrane.  相似文献   

4.
Confluent monolayer cultures of the Madin-Darby canine kidney (MDCK) cell line have been shown to possess a furosemide and bumetanide-sensitive (Na+,K+)-cotransport system. We have studied the effect of anion substitutions on (Na+,K+)-cotransport. In Na+-depleted cells, bumetanide-sensitive uptake of 22Na+ or 86Rb+ exhibited an absolute requirement for extracellular Cl-. Chloride could be replaced in the buffers by Br-, but not by F-, I-, acetate, nitrate, thiocyanate, sulfate, or gluconate. The effect of Cl- was saturating, and Na+-stimulated 86RB+ uptake as well as K+-stimulated 22Na+ uptake was shown to be dependent on the square of the Cl- concentration. The concentration of Cl- which gave half-maximal stimulation of cation cotransport varied between 58 and 70 mM. There was a small degree of cooperativity between the binding affinities for Cl- and K+ at constant Na+ concentrations. Bumetanide-sensitive 36Cl- uptake could be demonstrated when extracellular Na+ and K+ were present simultaneously. Uptake through this system was unaffected by changes in the membrane potential or by the imposition of pH gradients. Together these data strongly suggest that the bumetanide-sensitive transport system in Madin-Darby canine kidney cells co-transports Na+, K+, and Cl- in a ratio of 1:1:2.  相似文献   

5.
We examined the development of K+ secretion after removing Cl- from the basolateral surface of isolated skins of Rana temporaria using noise analysis. K+ secretion was defined by the appearance of a Lorentzian component in the power density spectrum (PDS) when Ba2+ was present in the apical bath (0.5 mM). No Lorentzians were observed when tissues were bathed in control, NaCl Ringer solution. Replacement of basolateral Cl- by gluconate, nitrate, or SO4- (0-Clb) yielded Lorentzians with corner frequencies near 25 Hz, and plateau values (So) that were used to estimate the magnitude of K+ secretion through channels in the apical cell membranes of the principal cells. The response was reversible and reproducible. In contrast, removing apical Cl- did not alter the PDS. Reduction of basolateral Cl- to 11.5 mM induced Lorentzians, but with lower values of So. Inhibition of Na+ transport with amiloride or by omitting apical Na+ depressed K+ secretion but did not prevent its appearance in response to 0-Clb. Using microelectrodes, we observed depolarization of the intracellular voltage concomitant with increased resistance of the basolateral membrane after 0-Clb. Basolateral application of Ba2+ to depolarize cells also induced K+ secretion. Because apical conductance and channel density are unchanged after 0-Clb, we conclude that K+ secretion is "induced" simply by an increase of the electrical driving force for K+ exit across this membrane. Repolarization of the apical membrane after 0-Clb eliminated K+ secretion, while further depolarization increased the magnitude of the secretory current. The cell depolarization after 0-Clb is most likely caused directly by a decrease of the basolateral membrane K+ conductance. Ba2(+)-induced Lorentzians also were elicited by basolateral hypertonic solutions but with lower values of So, indicating that cell shrinkage per se could not entirely account for the response to 0-Clb and that the effects of 0-Clb may be partly related to a fall of intracellular Cl-.  相似文献   

6.
This paper describes properties of 86Rb+ fluxes through a novel K+ channel in luminal-membrane vesicles isolated from pars convoluta of rabbit proximal tubule. The uptake of 86Rb+ into potassium salt loaded vesicles was specifically inhibited by Ba2+. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using these membrane vesicles loaded with anions of different membrane permeability and was as follows: gluconate greater than SO4(2-) greater than Cl-. Furthermore, the vesicles containing the channels show a cation selectivity with the order K+ greater than Rb+ greater than Li+ greater than Na+ = choline+.  相似文献   

7.
ATP-sensitive K(+)-channel run-down is Mg2+ dependent   总被引:8,自引:0,他引:8  
ATP-sensitive K(+)-channel currents were recorded from isolated membrane patches and voltage-clamped CRI-G1 insulin-secreting cells. Internal Mg2+ ions inhibited ATP-K+ channels by a voltage-dependent block of the channel current and decrease of open-state probability. The run-down of ATP-K+ channel activity was also shown to be [Mg2+]i dependent, being almost abolished in Mg2(+)-free conditions. Substitution of Mn2+ for Mg2+ did not prevent run-down, nor did the presence of phosphate-donating nucleotides, a protease or phosphatase inhibitor or replacement of Cl- by gluconate.  相似文献   

8.
A small conductance chloride channel has been identified on the apical membrane of porcine thyroid cells using the patch-clamp technique. In cell attached membrane patches with NaCl in the pipette, the single channel conductance is 5.5 pS. The channel is highly selective for chloride over gluconate and iodide, and is impermeable to Na+, K+ and tetraethylammonium ions. The open state probability of the channel is not affected by voltage. The channel activity disappears after excision of the patch. The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) did not affect the activity of the thyroid Cl- channels. Treatment of thyroid cells with 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-chloro-cAMP) (0.5 mM) prior to giga-seal formation increased Cl- channel activity in the apical membrane of thyroid cells.  相似文献   

9.
Multivesicular bodies (MVB), prelysosomal organelles in the endocytic pathway, were prepared from estrogen-treated rat livers and examined for the presence of ATP-dependent proton transport. Vesicle acidification, assessed by acridine orange fluorescence quenching, was ATP dependent (ATP much greater than GTP, UTP), was enriched 25-fold over homogenate, was abolished by pretreatment with protonophores or a nonionic detergent, exhibited a pH optimum of 7.5, was inhibited by N-ethylmaleimide (NEM) (IC50 approximately 5 microM) and N,N'-dicyclohexylcarbodiimide (IC50 approximately 5 microM), and was resistant to inhibition by vanadate, ouabain, and oligomycin. Acidification exhibited no specific cation requirement; however, maximal rates of acidification depended upon the presence of Cl- (Km approximately 20 mM). Other anions were less effective in supporting acidification (Cl- greater than Br- greater than much greater than gluconate, NO-3, SO2-4, and mannitol), and indeed NO-3 inhibited acidification even in the presence of 150 mM Cl-. The proton transport mechanism appeared to be electrogenic based on: (a) enhancement of acidification by valinomycin in the presence of K gluconate, and (b) ATP-dependent fluorescence quenching of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol, a membrane potential-sensitive anionic dye. Furthermore, the magnitude of the pH and electrical gradients generated by the proton transport mechanism appeared to vary inversely in the presence and absence of Cl-. Finally, MVB exhibited ATPase activity that was resistant to ouabain and oligomycin, but was inhibited 32.3% by 1 mM NEM, 33.7% by 200 microM dicyclohexylcarbodiimide, and 18.7% by KNO3. In isolated MVB, therefore, the NEM-sensitive ATPase activity may represent the enzymatic equivalent of a proton pump. These studies identify and characterize an ATP-dependent electrogenic proton transport process in rat liver MVB which shares many of the properties of the proton pump described in clathrin-coated vesicles, endosomes, lysosomes, Golgi, and endoplasmic reticulum from liver and other tissues. Acidification of MVB differed somewhat from that of rat liver clathrin-coated vesicles in response to Br- and NO-3, suggesting that membrane properties of these two organelles might differ.  相似文献   

10.
The inner stripe of the outer medullary collecting tubule is a major distal nephron segment in urinary acidification. To examine the mechanism of basolateral membrane H+/OH-/HCO3- transport in this segment, cell pH was measured microfluorometrically in the inner stripe of the rabbit outer medullary collecting tubule perfused in vitro using the pH-sensitive fluorescent dye, (2',7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein. Decreasing peritubular pH from 7.4 to 6.8 (changing [HCO3-] from 25 to 5 mM) caused a cell acidification of 0.25 +/- 0.02 pH units, while a similar luminal change resulted in a smaller cell acidification of only 0.04 +/- 0.01 pH units. Total replacement of peritubular Cl- with gluconate caused cell pH to increase by 0.18 +/- 0.04 pH units, an effect inhibited by 100 microM peritubular DIDS and independent of Na+. Direct coupling between Cl- and base was suggested by the continued presence of peritubular Cl- removal-induced cell alkalinization under the condition of a cell voltage clamp (K(+)-valinomycin). In addition, 90% of basolateral membrane H+/OH-/HCO3- permeability was inhibited by complete removal of luminal and peritubular Cl-. Peritubular Cl(-)-induced cell pH changes were inhibited two-thirds by removal of exogenous CO2/HCO3- from the system. The apparent Km for peritubular Cl- determined in the presence of 25 mM luminal and peritubular [HCO3-] was 113.5 +/- 14.8 mM. These results demonstrate that the basolateral membrane of the inner stripe of the outer medullary collecting tubule possesses a stilbene-sensitive Cl-/HCO3- exchanger which mediates 90% of basolateral membrane H+/OH-/HCO3- permeability and may be regulated by physiologic Cl- concentrations.  相似文献   

11.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

12.
Taurine, a sulfated beta-amino acid, is conditionally essential during development. A maternal supply of taurine is necessary for normal fetal growth and neurologic development, suggesting the importance of efficient placental transfer. Uptake by the brush-border membrane (BBM) in several other tissues has been shown to be via a selective Na(+)-dependent carrier mechanism which also has a specific anion requirement. Using BBM vesicles purified from the human placenta, we have confirmed the presence of Na(+)-dependent, carrier-mediated taurine transport with an apparent Km of 4.00 +/- 0.22 microM and a Vmax of 11.72-0.36 pmol mg-1 protein 20 s-1. Anion dependence was examined under voltage-clamped conditions, in order to minimize the contribution of membrane potential to transport. Uptake was significantly reduced when anions such as thiocyanate, gluconate, or nitrate were substituted for Cl-. In addition, a Cl(-)-gradient alone (under Na(+)-equilibrated conditions) could energize uphill transport as evidenced by accelerated uptake (3.13 +/- 0.8 pmol mg-1 protein 20 s-1) and an overshoot compared to Na+, Cl- equilibrated conditions (0.60 +/- 0.06 pmol mg-1 protein 20 s-1). A Cl(-)-gradient (Na(+)-equilibrated) also stimulated uptake of [3H]taurine against its concentration gradient. Analysis of uptake in the presence of varying concentrations of external Cl- suggested that 1 Cl- ion is involved in Na+/taurine cotransport. We conclude that Na(+)-dependent taurine uptake in the placental BBM has a selective anion requirement for optimum transport. This process is electrogenic and involves a stoichiometry of 2:1:1 for Na+/Cl-/taurine symport.  相似文献   

13.
1. From Escherichia coli strain K2.1.5(c).8.9, which is devoid of 6-phosphogluconate dehydrogenase (gnd) and 6-phosphogluconate dehydratase (edd) activities, a mutant R6 was isolated that was tolerant to gluconate though still edd(-), gnd(-). 2. Measurements of the fate of labelled gluconate, of the conversion of gluconate into 6-phosphogluconate, and of the induction of gluconate kinase by the two organisms show that, although both inducibly form a gluconate-transport system, strain R6 is impaired in its ability to convert the gluconate thus taken up into 6-phosphogluconate; it was therefore used for study of the kinetics and energetics of gluconate uptake. 3. Suspensions of strain R6 induced for gluconate uptake took up this substrate via a ;high affinity' transport process, with K(m) about 10mum and V(max.) about 25nmol/min per mg dry mass; a ;low affinity' system demonstrated to occur in certain E. coli mutants was not induced under the conditions used in this work. 4. The uptake of gluconate was inhibited by lack of oxygen and by inhibitors of electron transport; such inhibitors also promoted the efflux of gluconate taken up. 5. Membrane vesicles prepared from strain R6 also manifested these properties when incubated with suitable electron donors, at rates similar to those observed with whole cells. 6. The results indicate that the active transport of gluconate into the cells is the rate-limiting step in gluconate utilization by E. coli, and that the mechanism of this process can be validly studied with membrane vesicles.  相似文献   

14.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

15.
The role of t-butylbicyclophosphorothionate (TBPS) as an antagonist of gamma-aminobutyric acid (GABA) was studied with primary cultures of neurons from the chick embryo cerebrum. The addition of GABA stimulated the uptake of 36Cl- by neurons and the dose dependence of this effect followed hyperbolic kinetics with a K0.5 = 1.3 microM for GABA. TBPS proved to be a potent inhibitor of GABA-dependent Cl- uptake (IC50 = 0.30 microM). Analysis of the kinetics of this process revealed that TBPS is a noncompetitive inhibitor (Ki = 0.15 microM) with respect to GABA. Scatchard analysis of direct binding of [35S]TBPS to membranes isolated from neuronal cultures gave curvilinear plots. These could be resolved by nonlinear regression methods into two components with KD values of 3.1 nM and 270 nM. The TBPS binding constant for this lower affinity site agreed well with the IC50 and Ki values for inhibition of Cl- flux, suggesting that this site is physiologically relevant to GABA antagonism. GABA was a noncompetitive displacer of [35S]TBPS binding to the lower affinity site. The Ki value for this displacement by GABA (1.7 microM) was comparable to the value for GABA enhancement of Cl- flux. The binding of [35S]TBPS to its low-affinity site on neuronal membranes was ninefold higher in the presence of Cl- than with gluconate, an impermeant anion. The rank order for anion stimulation of [35S]TBPS binding was Br- greater than or equal to SCN- greater than Cl- greater than or equal to NO3- greater than I- greater than F- greater than gluconate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Hyposmolarity-induced taurine release was dependent on the decrease in medium osmolarity (5-50%) in the satellite glial cells of the bullfrog sympathetic ganglia. Release of GABA induced by hyposmolarity was much less than that of taurine. Omission of external Cl- replaced with gluconate totally suppressed taurine release, but only slightly suppressed GABA release. Bumetanide and furosemide, blockers of the Na+/K+/2Cl- cotransport system, inhibited taurine release by about 40%. Removal of external Na+ by replacement with choline, or omission of K+, suppressed taurine release by 40%. Antagonists of the Cl-/HCO3 exchange system, SITS, DIDS and niflumic acid, significantly reduced taurine release. The carbonic anhydrase inhibitor, acetazolamide, reduced the taurine release by 34%. Omission of external HCO3 by replacement with HEPES caused a 40% increase in the hyposmolarity-induced taurine release. Hyposmolarity-induced GABA release was not affected by bumetanide or SITS. Chloride channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and N-phenylanthranilic acid (DPC), practically abolished taurine release. Blockers of K+ channels, clofilium and quinidine, had no effect on the taurine release. The hyposmolarity-induced taurine release was considerably enhanced by a simultaneous increase in external K+. GABA was not mediated by the same transport pathway as that of taurine. These results indicate that Cl- channels may be responsible for the hyposmolarity-induced taurine release, and that Na+/K+/2Cl- cotransporter and Cl-/HCO3 exchanger may contribute to maintain the intracellular Cl- levels higher than those predicted for a passive thermodynamic distribution in the hyposmolarity-induced taurine release.  相似文献   

17.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The mechanism of ion transport in the epithelium of rabbit cornea was studied by determining the intracellular ion activity of Cl-, Na+ and K+ under various conditions. Ionic activities were measured by means of microelectrodes containing liquid ion-exchangers selective for Cl-, Na+ or K+. The Cl- activity in basal cells of the epithelium in Na+ containing bathing solutions amounts to 28 +/- 2 mM (n = 11). This value is 1.9-times greater than expected on the basis of passive distribution across the tear side membrane. This finding suggests the existence of a Cl- accumulating process. Replacement of Na+ in the aqueous bathing solution by choline or tetraethylammonium results in a reversible decrease in Cl- activity to 22 +/- 1 mM (n = 11, P less than 0.025). The ratio of observed and predicted Cl- activity decreased significantly from 1.9 to 1.4 (P less than 0.05). The decrease in Cl- activity due to Na+ replacement was rather slow. In contrast, after readmittance of Na+ to the aqueous bathing solution, Cl- activity rose to a stable level within 30 min. These results indicate involvement of Na+ in Cl- accumulation into the basal cells of the epithelium. The K+ and Na+ activities of the basal cells of rabbit corneal epithelium in control bathing solutions were 75 +/- 4 mM (n = 13) and 24 +/- 3 mM (n = 12), respectively. The results can be summarized in the following model for Cl- transport across corneal epithelium. Cl- is accumulated in the basal cells across the aqueous side membrane, energized by a favourable Na+ gradient. Cl- will subsequently leak out across the tear side membranes. Na+ is extruded again across the aqueous side membrane of the epithelium by the (Na+ + K+)-ATPase.  相似文献   

19.
Anion inhibition of the proton pump in rat liver multivesicular bodies   总被引:3,自引:0,他引:3  
Rat liver multivesicular bodies (MVB), as well as other hepatic subcellular organelles, are acidified by an electrogenic ATP-dependent proton pump that requires Cl- for maximal acidification (Van Dyke, R. W., Hornick, C. A., Belcher, J., Scharschmidt, B. F., and Havel, R.J. (1985) J. Biol. Chem. 260, 11021-11026), suggesting that Cl- serves as a permeable charge-compensating anion. However, we have observed that NO3- is unable to substitute for Cl-. This study was undertaken therefore to examine more closely the effects of Cl- on MVB acidification and to determine whether NO3- and other anions interact with the proton pump. ATP-dependent vesicle acidification and membrane potential (psi) were measured using the fluorescent dyes acridine orange and Oxonol V (bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol), respectively. Cl- both stimulated acidification (Km = 23.2 +/- 4.2 mM) and decreased psi (IC50 = 3.4 +/- 0.6 mM) in a concentration-dependent, nonlinear fashion. In the presence of saturating Cl- (100 mM), however, NO3- (shown to be more permeable than Cl-) and the impermeant anions SO4(2-) and PO4(2-), inhibited both ATP-dependent acidification and psi in a concentration-dependent manner. Other anions, including gluconate and HCO3-, had no effect. The inhibitory effect of NO3- was reversible. Neither SO4(2-) nor PO4(2-) appeared to block Cl- movement across the vesicle membrane as assessed by the ability of Cl- to decrease an established psi. In additional experiments, the effects of anions on relaxation of a previously established pH gradient were measured. Compared to Cl- or gluconate, NO3- had no significant effect on pH gradient relaxation, even when MVB were preloaded with NO3-, indicating that rapid cycling of NO3-/HNO3 across the MVB membrane does not occur. The organic nitrate, isosorbide dinitrate, also inhibited both acidification and psi and, similar to NO3-, had no effect on pH gradient relaxation. By contrast, NO2- potently inhibited both MVB acidification and psi but also rapidly relaxed a pre-established pH gradient, suggesting that NO2- increases MVB membrane proton permeability. Finally, MVB exhibited N-ethylmaleimide-sensitive ATPase activity that was inhibited 23.9% by NO3- (100 mM). In conclusion, although MVB are permeable to a variety of anions (Cl-, Br-, NO3-, NO2-), only Cl- and Br- support maximal rates of acidification by the proton pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号