首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A direct interaction of the regulatory domain (R domain) of the cystic fibrosis transmembrane conductance regulator protein (CFTR) with PR65, a regulatory subunit of the protein phosphatase 2A (PP2A), was shown in yeast two hybrid, pull-down and co-immunoprecipitation experiments. The R domain could be dephosphorylated by PP2A in vitro. Overexpression of the interacting domain of PR65 in Caco-2 cells, as well as treatment with okadaic acid, showed a prolonged deactivation of the chloride channel. Taken together our results show a direct and functional interaction between CFTR and PP2A.  相似文献   

2.
Protein phosphatase type 1 (PP1) is one of the major classes of serine/threonine protein phosphatases, and has been found in all eukaryotic cells examined to date. Metazoans from Drosophila to humans have multiple genes encoding catalytic subunits of PP1 (PP1c), which are involved in a wide range of biological processes. Different PP1c isoforms have pleiotropic and overlapping functions; this has complicated the analysis of their biological roles and the identification of specific in vivo substrates. PP1c isoforms are associated in vivo with regulatory subunits that target them to specific locations and modify their substrate specificity and activity. The PP1c-binding proteins are therefore the key to understanding the role of PP1 in particular biological processes. The existence of isoform specific PP1c-binding subunits may also help to explain the unique roles of different PP1c isoforms. Here we report the identification of 24 genes encoding Drosophila PP1c-binding proteins in the yeast two-hybrid system. Sequence analysis identified a minimal interacting fragment and putative PP1c-binding motif for each protein, delimiting the region involved in binding to PP1c. Further two-hybrid analysis showed that virtually all of the interactors were capable of binding all Drosophila PP1c isoforms. One of the novel interactors, CG1553, was examined further and shown to interact with multiple isoforms by co-immunoprecipitation from Drosophila extracts and functional interaction with PP1c isoforms in vivo. Bioinformatic analyses implicate the putative PP1c-associated subunits in a diverse array of intracellular processes. Our identification of a large number of PP1c-binding proteins with the potential for directing PP1c's specific functions in Drosophila represents a significant step towards a full understanding of the range of PP1 complexes and function in animals.  相似文献   

3.
Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin‐inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data‐dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.  相似文献   

4.
Teruya T  Simizu S  Kanoh N  Osada H 《FEBS letters》2005,579(11):2463-2468
According to the chemical genetic approach, small molecules that bind directly to proteins are used to analyze protein function, thereby enabling the elucidation of complex mechanisms in mammal cells. Thus, it is very important to identify the molecular targets of compounds that induce a unique phenotype in a target cell. Phoslactomycin A (PLMA) is known to be a potent inhibitor of protein Ser/Thr phosphatase 2A (PP2A); however, the inhibitory mechanism of PP2A by PLMA has not yet been elucidated. Here, we demonstrated that PLMA directly binds to the PP2A catalytic subunit (PP2Ac) in cells by using biotinylated PLMA, and the PLMA-binding site was identified as the Cys-269 residue of PP2Ac. Moreover, we revealed that the Cys-269 contributes to the potent inhibition of PP2Ac activity by PLMA. These results suggest that PLMA is a PP2A-selective inhibitor and is therefore expected to be useful for future investigation of PP2A function in cells.  相似文献   

5.
Protein phosphatase 2A (PP2A) is composed of structural (A), catalytic (C), and regulatory (B) subunits. The catalytic subunit (PP2A(C)) undergoes reversible carboxyl-methylation and -demethylation at its C-terminal leucine residue (Leu309), catalyzed by PP2A-methyltransferase (PMT) and PP2A methylesterase (PME-1), respectively. In this study, we observed that the activity of PP2A was largely unaffected by the addition of PME-1, and that the regulatory subunit (PR55/B) could bind demethylated PP2A(D). Furthermore, to study the precise effect of Leu309 demethylation on PP2A activity, we generated two His(8)-tagged mutant versions of PP2A(C) containing an alanine residue in place of Leu309, and a deletion of Leu309. Both recombinant mutants exhibited phosphatase activity. In addition, we demonstrated that both mutants could constitute a holoenzyme with the regulatory A and B subunits. Our collective results indicate that methylation of Leu309 of PP2A(C) is unnecessary for the PP2A activity and the binding of PR55/B.  相似文献   

6.
Type 2A serine/threonine protein phosphatases (PP2A) are key components in the regulation of signal transduction and control of cell metabolism. The activity of these protein phosphatases is modulated by regulatory subunits. While PP2A activity has been characterized in plants, little is known about its regulation. We used the polymerase chain reaction to amplify a segment of a cDNA encoding the B regulatory subunit of PP2A from Arabidopsis. The amplified DNA fragment of 372 nucleotides was used as a probe to screen an Arabidopsis cDNA library and a full-length clone (AtB) of 2.1 kbp was isolated. The predicted protein encoded by AtB is 43 to 46% identical and 53 to 56% similar to its yeast and mammalian counterparts, and contains three unique regions of amino acid insertions not present in the animal B regulatory subunit. Genomic Southern blots indicate the Arabidopsis genome contains at least two genes encoding the B regulatory subunit. In addition, other plant species also contain DNA sequences homologous to the B regulatory subunit, indicating that regulation of PP2A activity by the 55 kDa B regulatory subunit is probably ubiquitous in plants. Northern blots indicate the AtB mRNA accumulates in all Arabidopsis tissues examined, suggesting the protein product of the AtB gene performs a basic housekeeping function in plant cells.  相似文献   

7.
By a number of criteria, we have demonstrated that the translation termination factor eRF1 (eukaryotic release factor 1) associates with protein phosphatase 2A (PP2A). Trimeric PP2A1 was purified from rabbit skeletal muscle using an affinity purification step. In addition to the 36 kDa catalytic subunit (PP2Ac) and established regulatory subunits of 65 kDa (PR65) and 55 kDa (PR55), purified preparations contained two proteins with apparent Mrs of 54 and 55 kDa. Protein microsequencing revealed that the 55 kDa component is a novel protein, whereas the 54 kDa protein was identified as eRF1, a protein that functions in translational termination as a polypeptide chain release factor. Using the yeast two-hybrid system, human eRF1 was shown to interact specifically with PP2Ac, but not with the PR65 or PR55 subunits. By deletion analysis, the binding domains were found to be located within the 50 N-terminal amino acids of PP2Ac, and between amino acid residues 338 and 381 in the C-terminal part of human eRF1. This association also occurs in vivo, since PP2A can be co-immunoprecipitated with eRF1 from mammalian cells. We observed a significant increase in the amount of PP2A associated with the polysomes when eRF1 was transiently expressed in COS1 cells, and eRF1 immunoprecipitated from those fractions contained associated PP2A. Since we did not observe any dramatic effects of PP2A on the polypeptide chain release activity of eRF1 (or vice versa), we postulate that eRF1 also functions to recruit PP2A into polysomes, thus bringing the phosphatase into contact with putative targets among the components of the translational apparatus.  相似文献   

8.
Entry into mitosis is mediated by the phosphorylation of key cell cycle regulators by cyclin-dependent kinase 1 (Cdk1). In Xenopus embryos, the M-phase-promoting activity of Cdk1 is antagonized by protein phosphatase PP2A-B55. Hence, to ensure robust cell cycle transitions, Cdk1 and PP2A-B55 must be regulated so that their activities are mutually exclusive. The mechanism underlying PP2A-B55 inactivation at mitotic entry is well understood: Cdk1-activated Greatwall (Gwl) kinase phosphorylates Ensa/Arpp19, thereby enabling them to bind to and inhibit PP2A-B55. However, the re-activation of PP2A-B55 during mitotic exit, which is essential for cell cycle progression, is less well understood. Here, we identify protein phosphatase PP1 as an essential component of the PP2A-B55 re-activation pathway in Xenopus embryo extracts. PP1 initiates the re-activation of PP2A-B55 by dephosphorylating Gwl. We provide evidence that PP1 targets the auto-phosphorylation site of Gwl, resulting in efficient Gwl inactivation. This step is necessary to facilitate subsequent complete dephosphorylation of Gwl by PP2A-B55. Thus, by identifying PP1 as the phosphatase initiating Gwl inactivation, our study provides the molecular explanation for how Cdk1 inactivation is coupled to PP2A-B55 re-activation at mitotic exit.  相似文献   

9.
10.
PRIP, phospholipase C related, but catalytically inactive protein was first identified as a novel inositol 1,4,5-trisphosphate binding protein. It has a number of binding partners including protein phosphatase (PP1 and 2A), GABAA receptor associated protein, and the β subunits of GABAA receptors, in addition to inositol 1,4,5-trisphosphate. The identification of these molecules led us to examine the possible involvement of PRIP in the phospho-regulation of the β subunits of GABAA receptors using hippocampal neurons prepared from PRIP-1 and 2 double knock-out (DKO) mice. Experiments were performed with special reference to the dephosphorylation processes of the β subunits. The phosphorylation of β3 subunits by the activation of protein kinase A in cortical neurons of the control mice continued for up to 5 min, even after washing out of the stimulus, followed by a gradual dephosphorylation. That of DKO mice gradually increased in spite of the lower phosphorylation levels induced by the stimulation. There was little difference in the amount of cellular cyclic AMP and protein kinase A activity between the control and mutant mice, indicating that phosphatases such as PP1 and PP2A are primarily involved in the difference. The time course of PP1 activity changes in the vicinity of the receptors in control mice corresponded to the phosphorylation of PRIP, while that of the mutant mice decreased with the period of the incubation. This is a good agreement with the suggestion that PRIP binds to and inactivates PP1, which is regulated by the phosphorylation of PRIP at threonine 94. These results suggest that PRIP plays an important role in controlling the dynamics of GABAA receptor phosphorylation by through PP1 binding and, therefore, the efficacy of synaptic inhibition mediated by these receptors.  相似文献   

11.
12.
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2–5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.  相似文献   

13.
The B″/PR72 family of protein phosphatase 2A (PP2A) is an important PP2A family involved in diverse cellular processes, and uniquely regulated by calcium binding to the regulatory subunit. The PR70 subunit in this family interacts with cell division control 6 (Cdc6), a cell cycle regulator important for control of DNA replication. Here, we report crystal structures of the isolated PR72 and the trimeric PR70 holoenzyme at a resolution of 2.1 and 2.4 Å, respectively, and in vitro characterization of Cdc6 dephosphorylation. The holoenzyme structure reveals that one of the PR70 calcium-binding motifs directly contacts the scaffold subunit, resulting in the most compact scaffold subunit conformation among all PP2A holoenzymes. PR70 also binds distinctively to the catalytic subunit near the active site, which is required for PR70 to enhance phosphatase activity toward Cdc6. Our studies provide a structural basis for unique regulation of B″/PR72 holoenzymes by calcium ions, and suggest the mechanisms for precise control of substrate specificity among PP2A holoenzymes.  相似文献   

14.
Phosphorylation of Thr116 and Thr226 on Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2-5) from human chromatin and replication origins. The phosphorylated Orc2 becomes dephosphorylated in the late M phase of the cell cycle. Here we show that protein phosphatase 1 (PP1) dephosphorylates Orc2. Dephosphorylation of Orc2 was accompanied by associating the dissociated Orc subunits with chromatin. Inhibitors of PP1 preferentially inhibited the dephosphorylation of Orc2. The overexpression of the α, β and γ PP1 isoforms decreased the amount of phosphorylated Orc2, and the depletion of these isoforms by RNA interference increased the amount of phosphorylated Orc2. These results suggest that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin.  相似文献   

15.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

16.
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.  相似文献   

17.
Neuronal N-methyl-D-aspartate subtype of ionotropic glutamate receptor (NMDAR) that plays essential roles in excitatory synaptic transmission is regulated by phosphorylation. However, the kinases and phosphatases involved in this regulation are not completely known. We show that the GluN2B subunit of NMDAR is phosphorylated at Ser1303 by protein kinase C (PKC) and is dephosphorylated by protein phosphatase 1 (PP1), but not protein phosphatase 2A (PP2A) in isolated postsynaptic density (PSD). Although PSD is known to harbor PKC, PP1 and PP2A, their ability to regulate phosphorylation of GluN2B-Ser1303 would depend on the accessibility of GluN2B-Ser1303 to these proteins. Since PSD preparation is likely to maintain the organization of its component proteins as inside neurons, accessibility of kinases and phosphatases to GluN2B-Ser1303in vivo would be addressed by experiments using this system. Using an antibody specific for the phosphorylated state of GluN2B-Ser1303 we demonstrate that PP1 is the major phosphatase in rat brain PSD that can dephosphorylate the GluN2B-Ser1303 endogenous to PSD. We also show that PKC present in PSD can phosphorylate GluN2B-Ser1303. The events reported here might be important in regulating GluN2B-Ser1303 phosphorylation in vivo.  相似文献   

18.
It is well established that the protein serine/threonine phosphatase 2A (PP2A) plays very important roles in many different cellular processes, including cell proliferation and differentiation, gene expres-sion, neurotransmission, apoptosis, and aging. PP2A consists of three heterogenic subunits: the scaffold subunit A, the catalytic subunit C, and the regulatory subunit B. While both the scaffold and the catalytic subunits contain only two forms, at least four families of the regulatory subunits, B, B, B′′, and B′′′ have been identified. These regulatory subunits from different families are encoded by different genes and bear other functions besides directing the specificity of PP2A. To study the functions of the regulatory subunits of PP2A in lower vertebrates, we have cloned the full-length cDNA sequence of the gene encoding the regulatory subunit B′δ of PP2A from gold fish, Carassius auratus using 3′-RACE and 5′-RACE cloning strategies. Our results revealed that the full-length B′δ cDNA contains 2415 bp and encodes a protein of 555 amino acids. The B′δ protein displays a very high level of sequence identity with the B′δ regulatory subunit from other species of vertebrates. Regarding its expression pattern, RT-PCR revealed that the highest level of mRNA was detected in brain, a less level detected in liver, spermary, ovary, kidney and gill, and the lowest level detected in the fin. During different developmental stages of gold fish, the highest level of mRNA expression was detected at the stages of two-cell, mul-tiple-cell, blastula and gastrula, and a decreased level of B′δ ?mRNA was detected in other develop-mental stages. At the protein level, the highest expression level of B′δ protein was found in spermary, ovary, brain and heart, a less amount found in liver and the lowest level detected in kidney, gill and fin. Developmentally, B′δ protein was strongly expressed at the stages of two-cell, multiple-cell, blastula, gastrula, neurula, and optic vesicle, and then decreased at the stages of brain differentiation and eye pigmentation. These results suggest that B′δ appears to play a very important role during gold fish development and also in adult tissue homeostasis.  相似文献   

19.
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a serine/threonine kinase that is important in synaptic plasticity and T cell maturation. Activation of CaMKIV requires calcium/calmodulin binding and phosphorylation at T200 by CaMK kinase. Our previous work has shown that protein serine/threonine phosphatase 2A (PP2A) forms a complex with CaMKIV and negatively regulates its activity. Here we demonstrate that PP2A tightly regulates T200 phosphorylation of endogenous CaMKIV, but has little effect on the phosphorylation of the ectopically-expressed kinase. This differential regulation of endogenous versus exogenous CaMKIV is due to differences in their ability to associate with PP2A, as exogenous CaMKIV associates poorly with PP2A in comparison to endogenous CaMKIV. The inability of exogenous CaMKIV to associate with PP2A appears to be due to limiting amounts of endogenous PP2A regulatory B subunits, since coexpression of Bα or Bδ causes the recruitment of PP2Ac to ectopic CaMKIV, leading to formation of a CaMKIV·PP2A complex. Together, these data indicate that the B subunits are essential for the interaction of PP2A with CaMKIV.  相似文献   

20.
蛋白磷酸酶2A是一种重要的丝氨酸/苏氨酸蛋白磷酸酶,对于调控多细胞的生命活动起重要作用。以金鱼大脑为材料,运用RT-PCR技术克隆得到PP2A调节亚基B55家族中PR55基因编码区部分序列。结果显示PR55基因cDNA长1218 bp,编码的多肽共含405个氨基酸。序列分析表明,该基因编码的蛋白与已知其他物种对应的PR55蛋白质均有着很高的同源性。用RT-PCR的方法检测了PR55基因在金鱼不同组织和胚胎发育不同时期的mRNA表达水平。结果表明,PR55基因表达呈现明显的组织和胚胎发育阶段差异性。在成体组织中,仅在大脑和鳍中有表达。在胚胎发育过程中,PR55从神经胚开始出现,整体呈现上升趋势,在出膜期达到最高水平。据此推测,PR55基因可能在金鱼胚胎发育中具有多种重要作用。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号