首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Sulfo-N-succinimidyl derivatives of the long-chain fatty acids, oleic and myristic, were synthesized and covalently reacted with isolated rat adipocytes. The plasma membrane proteins labeled by these compounds and the effect of labeling on the transport of long-chain fatty acids were investigated. Sulfo-N-succinimidyl oleate (SSO) and myristate (SSM) inhibited the transport of fatty acids (by about 70%). Inhibition of fatty acid transport was not a result of alterations in cell integrity, as intracellular water volume was not changed. It did not reflect effects on fatty acid metabolism, since it was observed under conditions where greater than 90% of the fatty acid taken up was recovered in the free form. The inhibitory effect was specific to the fatty acid transport system, as the transport of glucose and the permeation of retinoic acid, a substance with structural similarities to long-chain fatty acids, were unaffected. Sulfosuccinimidyl oleate reacted exclusively with a plasma membrane protein with an apparent size of 85 kDa while sulfosuccinimidyl myristate also labeled a 75-kDa while sulfosuccinimidyl myristate also labeled a 75-kDa protein. These proteins were among the ones labeled by diisothiocyanodisulfonic acid (DIDS) which also inhibits fatty acid transport irreversibly. The data suggest that the 85-kDa protein, which is the only one labeled by all three inhibitors is involved in facilitating membrane permeation of long-chain fatty acids.  相似文献   

2.
Clostridium thermocellum is a candidate organism for consolidated bioprocessing of lignocellulosic biomass into ethanol. However, commercial use is limited due to growth inhibition at modest ethanol concentrations. Recently, an ethanol-adapted strain of C. thermocellum was produced. Since ethanol adaptation in microorganisms has been linked to modification of membrane lipids, we tested the hypothesis that ethanol adaptation in C. thermocellum involves lipid modification by comparing the fatty acid composition and membrane anisotropy of wild-type and ethanol-adapted strains. Derivatization to fatty acid methyl esters provided quantitative lipid analysis. Compared to wild-type, the ethanol-adapted strain had a larger percentage of fatty acids with chain lengths >16:0 and showed a significant increase in the percentage of 16:0 plasmalogens. Structural identification of fatty acids was confirmed through mass spectral fragmentation patterns of picolinyl esters. Ethanol adaptation did not involve modification at sites of methyl branching or the unsaturation index. Comparison of steady-state fluorescence anisotropy experiments, in the absence and presence of ethanol, provided evidence for the effects of ethanol on membrane fluidity. In the presence of ethanol, both strains displayed increased fluidity by approximately 12%. These data support the model that ethanol adaptation was the result of fatty acid changes that increased membrane rigidity that counter-acted the fluidizing effect of ethanol.  相似文献   

3.
We have studied the effect of membrane fatty acid composition on replicative DNA synthetic activity in mitochondria isolated from Saccharomyces cerevisiae. Cells containing different levels of membrane unsaturated fatty acids were obtained by growth of a fatty acid desaturase mutant of Saccharomyces cerevisiae in glucose-limited chemostat cultures supplemented with various concentrations of Tween 80. Arrhenius plots of DNA synthetic activity in isolated mitochondria show a discrete discontinuity at specific temperature which are dependent on the membrane unsaturated fatty acid content of the mitochondria. This indicates a functional association of DNA replication with the mitochondrial membrane in Saccharomyces cerevisiae.  相似文献   

4.
The possibility was considered that the sleep-like state seen after injection of short chain fatty acids salts into animals is a result of inhibition of the sodium-potassium activated ATPase. Tris salts of short chain fatty acids inhibited brain Na-K ATPase activity in vitro at concentrations similar to intravenous levels causing narcosis in vivo. The inhibition depended on the logarithm of the concentration of a given acid. The concentration of acid anion which caused 50 per cent inhibition of the enzyme system (I50) was determined for straight and branched chain acids with 4-12 carbon atoms per molecule. The log of I50 concentrations plotted against the number of carbon atoms in the molecule gave a straight line; the inhibitory capacity of an acid increased by a factor of 2.3 for each--CH2--added to the carbon chain. It is suggested that both fatty acid narcosis and the enzyme inhibition result from fatty acid molecules forming an ordered array along the membrane in association with membrane lipids.  相似文献   

5.
Murine fibroblasts, LM cells, were cultured in suspension with laurate (12:0), myristate (14:0), palmitate (16:0), palmitoleate (16:1), or palmitate + palmitoleate (16:0 + 16:1) bound to fatty acid-free bovine serum albumin. Supplementation with saturated fatty acids decreased the ratio of unsaturated/saturated fatty acids in membrane phospholipids as much as 3.4-fold (palmitate-enriched cells). Concomitantly fluorescence polarization, absorption-corrected fluorescence, and relative fluorescence efficiency of the fluorescence probe molecule, β-parinaric acid, increased 1.5-, 2.9-, and 1.8-fold, respectively, in the membrane phospholipids. Unsaturated fatty acid (palmitoleate) increased the unsaturated/saturated fatty acid ratio by 20% but did not significantly alter the fluorescence parameters. When the cells were fed mixtures of palmitate and palmitoleate, the unsaturated/saturated fatty acid ratio of the membrane phospholipids and the above fluorescence parameters had values intermediate between those if each fatty acid had been fed separately. All fatty acid supplements caused a loss of two characteristic temperatures in Arrhenius plots of relative fluorescence efficiency. However, no shifts or appearance of new characteristic temperatures occurred. The break points at approximately 42, 37, and 22 °C were essentially un-altered. The data were consistent with the possibility that LM cells were unable to maintain constant fluidity, as indicated by fluorescence polarization, when supplemented with different fatty acids. A good correlation could be made between the phospholipid unsaturated/ saturated fatty ratio, the fluorescence polarization, and the toxicity elicited by different fatty acid supplements.  相似文献   

6.
The endogenous respiration of resting, submerged grown Boletus variegatus mycelium has been determined. In young cultures the intensity of the endogenous oxygen uptake was subject to great variations during the first few hours of starvation. However, by using six to eight days old mycelium the Qo2 values could be kept at a relatively low and constant level for at least nine hours. Inhibition of the endogenous respiration was found after addition of n-saturated C-2 to C-12 fatty acids (2 × 10-3M, pH 4.85). The inhibitory effect of the compound was dependent on the length of the carbon chain. Maximum effects were obtained for acids with eight to twelve carbon atoms per molecule. The inhibition was also dependent on the amount of undissociated acid present. By raising the pH so that the fatty acid dissociated the established inhibition was partly reversed. The effect of the neutral compound methyl octanoate was in essence identical to that obtained with octanoic acid. After fatty acid addition a close correspondence was found between the degree of inhibition of the oxygen uptake and the amount of UV absorbing substances leaking out from the cells. This extracellular material had an absorption maximum at 260 nm and a minimum around 240 nm. The leaking was ascribed to interaction between fatty acids or methyl octanoate and lipophilic substances of the cytoplasmic membrane. It is suggested that the inhibitory action on the endogenous respiration is due to similar effects on intracellular membrane systems.  相似文献   

7.
The antifungal mode of action of chitosan has been studied for the last 30 years, but is still little understood. We have found that the plasma membrane forms a barrier to chitosan in chitosan‐resistant but not chitosan‐sensitive fungi. The plasma membranes of chitosan‐sensitive fungi were shown to have more polyunsaturated fatty acids than chitosan‐resistant fungi, suggesting that their permeabilization by chitosan may be dependent on membrane fluidity. A fatty acid desaturase mutant of Neurospora crassa with reduced plasma membrane fluidity exhibited increased resistance to chitosan. Steady‐state fluorescence anisotropy measurements on artificial membranes showed that chitosan binds to negatively charged phospholipids that alter plasma membrane fluidity and induces membrane permeabilization, which was greatest in membranes containing more polyunsaturated lipids. Phylogenetic analysis of fungi with known sensitivity to chitosan suggests that chitosan resistance may have evolved in nematophagous and entomopathogenic fungi, which naturally encounter chitosan during infection of arthropods and nematodes. Our findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitosan.  相似文献   

8.
9.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

10.
The growth of Synechococcus cedrorum Saug. (UTEX 1191) at 40 C resulted in structural and functional alteratons relative to cells grown at 30 C. Structural variations included cell morphology and the chemical composition of the membrane. Growth at 40 C. produced cells that were longer and thinner than those at 30 C. The fatty acid composition changed substantially upon growth at 40 C. yielding a distribution with a higher ratio of: i) saturated to unsaturated fatty acids and; ii) longer chain unsaturated fatty acids. Furthermore, the pattern of membrane proteins as determined by sodium dodecyl sulfate electrophoresis was distinctly different. The functional changes were typified by photosynthetic rates which were approximately half those of the 30 C grown cells. A number of spectral parameters were also seen to change in 40 C. grown cells: absorption spectra indicated a higher phycocyanin : chlorophyll ratio. Low temperature fluorescence spectra were consistent with a lowered efficiency of energy transfer from phycocyanin to chlorophyll. It is suggested that the fatty acid changes at 40 C. yield a more fluid membrane which is responsible for the functional alterations. The modification of phycocyanin. chlorophyll ratios, as well as the appearance of P750, is discussed with respect to membrane fluidity.  相似文献   

11.
The membrane pacemaker theory of aging is an extension of the oxidative stress theory of aging. It emphasises variation in the fatty acid composition of membranes as an important influence on lipid peroxidation and consequently on the rate of aging and determination of lifespan. The products of lipid peroxidation are reactive molecules and thus potent damagers of other cellular molecules. It is suggested that the feedback effects of these peroxidation products on the oxidative stress experienced by cells is an important part of the aging process. The large variation in the chemical susceptibility of individual fatty acids to peroxidation coupled with the known differences in membrane composition between species can explain the different lifespans of species, especially the difference between mammals and birds as well as the body-size-related variation in lifespan within mammals and birds. Lifespan extension by calorie-restriction can also be explained by changes in membrane fatty acid composition which result in membranes more resistant to peroxidation. It is suggested that lifespan extension by reduced insulin/IGF signalling may also be mediated by changes in membrane fatty acid composition.  相似文献   

12.
The effects of changes in fatty acid composition of the cell membrane on different biological functions ofSalmonella typhimurium have been studied with the help of a temperature sensitive fatty acid auxotroph which cannot synthesise unsaturated fatty acids at high temperature. On being shifted to nonpermissive temperature the cells continue growing for another one and half to two generations. The rates of protein and DNA syntheses run parallel to the growth rate but the rate of RNA synthesis is reduced. Further, there is a gradual reduction in the rate of transport of exogenous uridine and thymidine into the soluble pool. The transport process can be restored by supplementing the growth medium with cis-unsaturated fatty acids but not trans-unsaturated ones although the growth of the cells is resumed by supplementation with eithercis or trans-unsaturated fatty acids. However, supplementation withtrans, trans-unsaturated fatty acids leads to only partial recovery of the transport process. The rate of oxygen uptake is also affected in cells grown in the presence of thetrans-unsaturated fatty acids, elaidic acid and palmitelaidic acid. Analysis of cells grown under different fatty acid supplementation indicate that fatty acid composition of the cell membrane, especially the ratio of unsaturated to saturated fatty acids varies with temperature shift and supplementation of the growth media with fatty acids.  相似文献   

13.
Calcium modulates fatty acid dynamics in rat liver plasma membranes   总被引:1,自引:0,他引:1  
Modulation of free fatty acid binding in isolated rat liver plasma membranes was evaluated using the fluorescent fatty acids trans-parinaric and cis-parinaric acid as analogues for saturated and unsaturated fatty acids, respectively. Binding of trans-parinarate but not cis-parinarate was inhibited by physiological levels of Ca2+. The effect was reversed by addition of excess EGTA. Calcium decreased the aqueous to lipid partition coefficient, Kp, of trans-parinaric acid for liver plasma membranes while increasing the Kp for cis-parinaric acid. In addition, Ca2+ also altered the fluorescence lifetime, the quantum yield, and the relative partitioning of trans-parinaric and cis-parinaric acid into fluid and solid phases. Calcium and EGTA did not affect the binding of 1,6-diphenyl-1,3,5-hexatriene. The effect of Ca2+ on the liver plasma membrane structure was to increase the rigidity of the membrane, primarily the solid domain. The fluorescence polarization of trans-parinarate, cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene at 24 degrees C in liver plasma membranes in the absence of Ca2+ was 0.295 +/- 0.008, 0.253 +/- 0.007, and 0.284 +/- 0.005, respectively. Calcium (2.4 mM) increased the polarization of these probe molecules in liver plasma membranes by 8-10%. EGTA (3.4 mM) reversed or abolished the increase in polarization. Thus, the fluorescent fatty acids trans-parinarate and cis-parinarate may be used to monitor fatty acid binding by isolated membranes, to evaluate factors such as Ca2+ which modulate fatty acid binding, and to investigate the microenvironment in which the fatty acids residue. The data suggest that Ca2+ may be an important regulator of fatty acid uptake by the liver plasma membrane, and thereby interact with intermediary metabolism of lipids at a step not involving lipolytic or synthetic enzymes.  相似文献   

14.
The renewal of fatty acids in the visual cells and pigment epithelium of the frog retina was studied by autoradiographic analysis of animals injected with tritiated palmitic, stearic, or arachidonic acids. Most of the radioactive material could be extracted from the retina with chloroform-methanol, indicating that the fatty acids had been esterified in lipids. Analysis of the extracts, after injection of [3H]palmitic acid, revealed that the radioactivity was predominantly in phospholipid. Palmitic acid was initially concentrated in the pigment epithelium, particularly in oil droplets which are storage sites for vitamin A esterified with fatty acid. The cytoplasm, but not the nucleus of these cells, was also heavily labeled. Radioactive fatty acid was bound immediately to the visual cell outer segment membranes, including detached rod membranes which had been phagocytized by the pigment epithelium. This is believed to be due to fatty acid exchange in phospholipid molecules already situated in the membranes. Gradually, the concentration of radioactive material in the visual cell outer segment membranes increased, apparently as a result of the addition of new phospholipid molecules, possibly augmented by the transfer from the pigment epithelium of esterified vitamin A. Injected fatty acid became particularly concentrated in new membranes which are continually assembled at the base of rod outer segments. This localized concentration was short-lived, apparently due to the rapid renewal of fatty acid. The results support the conclusion that rods renew the lipids of their outer segments by membrane replacement, whereas both rods and cones renew the membrane lipids by molecular replacement, including fatty acid exchange and replacement of phospholipid molecules in existing membranes.  相似文献   

15.
The transport of α-methyl-D-glucoside and two aminoacids, L-phenylalanine and L-leucine by a temperature sensitive fatty acid requiring mutant ofSalmonella typhimurium was studied under conditions of supplementation withcis or trans-unsaturated fatty acids. The results of such experiments definitely establish a relationship between the fatty acids composition of the membrane and the transport property of the cells. Cells grown in the presence of trans-unsaturated fatty acids cannot transport so efficiently as compared to the cis-unsaturated fatty acid-grown cells except linolelaidic acid, atrans-trans-unsaturated fatty acid. Protein: phospholipid ratio of the membrane also varies significantly under such conditions. The affinity of L-phenylalanine transport carrier for the substrate changes remarkably in cells grown in the presence of differentcis or trans-unsaturated fatty acids and indicate the possible role of membrane lipids in membrane assembly as well as regulation of the activity of L-phenylalanine transport system.  相似文献   

16.
Summary Although fatty acid uptake by the myocardium is rapid and efficient, the mechanism of their transmembrane transport has been unclear. Fatty acids are presented to the plasma membrane of cardiomyocytes as albumin complexes within the plasma. Since albumin is not taken up by the cells, it was postulated that specific high affinity binding sites at the sarcolemma may mediate the dissociation of fatty acids from the albumin molecules, before they are transported into the cells. In studies with a representative long-chain fatty acid, oleate, it was in fact shown that fatty acids bind with high affinity to isolated plasma membranes of rat heart myocytes revealing a KD of 42 nM. Moreover, a specific membrane fatty acid-binding protein (MFABP) was isolated from these membranes. It had a molecular weight of 40 kD, an isoelectric point of 9.0, and lacked carbohydrate or lipid components. Binding to a specific membrane protein might represent the first step of a carrier mediated uptake process. Therefore, the uptake kinetics of oleate by isolated rat heart myocytes was determined under conditions where only cellular influx and not metabolism occurred. Uptake revealed saturation kinetics and was temperature dependent which were considered as specific criteria for a facilitated transport mechanism. For evaluation whether uptake is mediated by MFABP, the effect of a monospecific antibody to this protein on cellular influx of oleate was examined. Inhibition of uptake of fatty acids but not of glucose by the antibody to MFABP indicated the physiologic significance of this protein as transmembrane carrier in the cellular uptake process of fatty acids. Such a transporter might represent an important site for the metabolic regulation of fatty acid influx into the myocardium.  相似文献   

17.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

18.
Effect of various fatty acids on the membrane potential of an alkaliphilic Bacillus, YN-2000, was examined. Addition of unsaturated fatty acids such as palmitoleic acid, oleic acid, linoleic acid, and linolenic acid at 30 M caused the instantaneous depolarization of the membrane potential of the bacterium, which appears to result in the drastic decrease of viability. On the other hand, no depolarization was detected by the addition of saturated acids such as palmitic acid, stearic acid, and 12-hydroxystearic acid even at 1 mM.  相似文献   

19.
Strain variation in the acidophile Acidithiobacillus ferrooxidans was examined as a product of membrane adaptation in response to pH stress. We tested the effects of sub and supra-optimal pH in two type strains and four strains isolated from acid mine drainage water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, and fatty acid profiles were compared. The effect of pH 1.5 was the most pronounced compared to the other pH values of 1.8, 3.1, and 3.5. Three different types of response to lower pH were observed, the first of which appeared to maintain cellular homeostasis more effectively. This adaptive mode included a decrease in membrane fluidity and concomitant depression of the phase transition in two distinct membrane lipid components. This was explained through the increase in saturated fatty acids (predominantly 16:0 and cyclopropane 19:0 w8c) with a concomitant decrease in 18:1 w7c fatty acid. The other strains also showed common adaptive mechanisms of specific fatty acid remodeling increasing the abundance of short-chain fatty acids. However, we suspect membrane permeability was compromised due to potential phase separation, which may interfere with energy transduction and viability at pH 1.5. We demonstrate that membrane physiology permits differentiating pH tolerance in strains of this extreme acidophile.  相似文献   

20.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号