首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes various human diseases, including blindness caused by ocular infection and sexually transmitted diseases resulting from urogenital infection. After infecting host cells, Chlamydiae avoid alarming the host's immune system. Among the immune evasion mechanisms, Chlamydiae can inhibit NF-κB activation, a crucial pathway for host inflammatory responses. In this study, we show that Chla Dub1, a deubiquitinating and deNeddylating protease from C. trachomatis , is expressed in infected cells. In transfection experiments, Chla Dub1 suppresses NF-κB activation induced by several pro-inflammatory stimuli and binds the NF-κB inhibitory subunit IκBα, impairing its ubiquitination and degradation. Thus, we provide further insight into the mechanism by which C. trachomatis may evade the host inflammatory response by demonstrating that Chla Dub1, a protease produced by this microorganism, is capable of inhibiting IκBα degradation and blocking NF-κB activation.  相似文献   

3.
Evodiamine, an alkaloidal component extracted from the fruit of Evodiae fructus (Evodia rutaecarpa Benth., Rutaceae), exhibits antiproliferative, antimetastatic, and apoptotic activities through a poorly defined mechanism. Because several genes that regulate cellular proliferation, carcinogenesis, metastasis, and survival are regulated by nuclear factor-kappaB (NF-kappaB), we postulated that evodiamine mediates its activity by modulating NF-kappaB activation. In the present study, we investigated the effect of evodiamine on NF-kappaB and NF-kappaB-regulated gene expression activated by various carcinogens. We demonstrate that evodiamine was a highly potent inhibitor of NF-kappaB activation, and it abrogated both inducible and constitutive NF-kappaB activation. The inhibition corresponded with the sequential suppression of IkappaBalpha kinase activity, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and p65 acetylation. Evodiamine also inhibited tumor necrosis factor (TNF)-induced Akt activation and its association with IKK. Suppression of Akt activation was specific, because it had no effect on JNK or p38 MAPK activation. Evodiamine also inhibited the NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK but not that activated by the p65 subunit of NF-kappaB. NF-kappaB-regulated gene products such as Cyclin D1, c-Myc, COX-2, MMP-9, ICAM-1, MDR1, Survivin, XIAP, IAP1, IAP2, FLIP, Bcl-2, Bcl-xL, and Bfl-1/A1 were all down-regulated by evodiamine. This down-regulation potentiated the apoptosis induced by cytokines and chemotherapeutic agents and suppressed TNF-induced invasive activity. Overall, our results indicated that evodiamine inhibits both constitutive and induced NF-kappaB activation and NF-kappaB-regulated gene expression and that this inhibition may provide a molecular basis for the ability of evodiamine to suppress proliferation, induce apoptosis, and inhibit metastasis.  相似文献   

4.
Methotrexate (MTX), a folate antagonist, is a commonly used anti-inflammatory, antiproliferative, and immunosuppressive drug whose mode of action is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that MTX must mediate its effects through suppression of NF-kappaB activation. We investigated the effects of MTX on NF-kappaB activation induced by TNF in Jurkat cells. The treatment of these cells with MTX suppressed TNF-induced NF-kappaB activation with optimum effects occurring at 10 microM MTX for 60 min. These effects were not restricted to Jurkat cells because other cell types were also inhibited. Besides TNF, MTX also suppressed the NF-kappaB activation induced by various other inflammatory stimuli. The suppression of TNF-induced NF-kappaB activation by MTX correlated with inhibition of IkappaBalpha degradation, suppression of IkappaBalpha phosphorylation, abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Because ecto 5' nucleotidase inhibitor (alpha,beta-methylene adenosine-5'-diphosphate) blocked the effect of MTX, adenosine mimicked the effect of MTX, and adenosine A2b receptor antagonist (3,7-dimethyl-1-propargylxanthine) reversed the inhibitory effect of MTX, we suggest that MTX suppresses NF-kappaB activation by releasing adenosine. A partial reversal of MTX-induced NF-kappaB suppression by thymidine and folinic acid indicates the role of the thymidylate synthase pathway also. Overall, our results clearly demonstrate that MTX suppresses NF-kappaB activation through the release of adenosine, which may contribute to the role of MTX in anti-inflammatory, immunomodulatory, and antiproliferative effects.  相似文献   

5.
6.
7.
Increased oxidative stress resulting in the activation of NF-kappaB is thought to play a crucial role in the expression of the cyclooxygenase-2 (COX-2), which is the key enzyme in proinflammatory prostanoid synthesis. In the current study, we investigated whether the aging process affects the status of the redox-sensitive NF-kappaB in rat kidney, and how this age-related modulation is related to COX-2 gene expression and COX-derived reactive oxygen species (ROS). We found that the aging process strongly enhanced the activation of NF-kappaB and its DNA-binding activity with an increased ROS status. Accompanied with the change in the NF-kappaB activity was a decreased IkappaBalpha as confirmed by the increased nuclear p65 protein. Thus, these data strongly indicated that the aging process increases NF-kappaB activity by downregulating IkappaBalpha. A closer examination further revealed that age-related oxidative status correlated with the increased COX-derived prostanoid biosynthetic process is mediated by the increased NF-kappaB-regulated COX activity. This increase in NF-kappaB activity was accompanied by the increased COX-2 mRNA and protein levels. Based on these data, we concluded that the age-related increase in redox-sensitive NF-kappaB translocation and binding activities are associated with increased ROS, and further that this transactivation was modulated by the age-related decrease of IkappaBalpha.  相似文献   

8.
9.
NF-kappaB-inducing kinase (NIK) has been implicated as an essential component of NF-kappaB activation. However, the regulatory mechanism of NIK signaling remains elusive. We have identified a novel NIK interacting protein, TNAP (for TRAFs and NIK-associated protein). In mammalian cells, TNAP physically interacts with NIK, TRAF2, and TRAF3 but not IKK1 or IKK2. TNAP specifically inhibits NF-kappaB activation induced by tumor necrosis factor (TNF)-alpha, TNF receptor 1, TRADD, RIP, TRAF2, and NIK but does not affect IKK1- and IKK2-mediated NF-kappaB activation. Knockdown of TNAP by lentiviral-mediated small interference RNA potentiates TNF-alpha-induced NF-kappaB activation. TNAP suppresses NIK kinase activity and subsequently reduces p100 processing, p65 phosphorylation, and IkappaBalpha degradation. These data suggest that TNAP is a repressor of NIK activity and regulates both the classical and alternative NF-kappaB signaling pathways.  相似文献   

10.
11.
Salmonella enterica translocates virulent factors into host cells using type III secretion systems to promote host colonization, intracellular bacterial replication and survival, and disease pathogenesis. Among many effectors, the type III secretion system encoded in Salmonella pathogenicity island 2 translocates a Salmonella-specific protein, designated Salmonella secreted factor L (SseL), a putative virulence factor possessing deubiquitinase activity. In this study, we attempt to elucidate the mechanism and the function of SseL in vitro, in primary host macrophages and in vivo in infected mice. Expression of SseL in mammalian cells suppresses NF-kappaB activation downstream of IkappaBalpha kinases and impairs IkappaBalpha ubiquitination and degradation, but not IkappaBalpha phosphorylation. Disruption of the gene encoding SseL in S. enterica serovar typhimurium increases IkappaBalpha degradation and ubiquitination, as well as NF-kappaB activation in infected macrophages, compared with wild-type bacteria. Mice infected with SseL-deficient bacteria mount stronger inflammatory responses, associated with increased production of NF-kappaB-dependent cytokines. Thus, SseL represents one of the first bacterial deubiquitinases demonstrated to modulate the host inflammatory response in vivo.  相似文献   

12.
Angiogenesis is an essential step in tumor progress and metastasis. Accordingly, small molecules that inhibit angiogenesis would appear to be a promising way to cure angiogenesis-related diseases, including cancer. In the present study, we report that streptochlorin, a small molecule from marine actinomycete, exhibits a potent antiangiogenic activity. The compound potently inhibited endothelial cell invasion and tube formation stimulated with vascular endothelial cell growth factor (VEGF) at low micromolar concentrations where it showed no cytotoxicity to the cells. In addition, streptochlorin inhibited TNF-alpha-induced NF-kappaB activation in the newly developed cell-based reporter gene assay. These data demonstrate that streptochlorin is a new inhibitor of NF-kappaB activation and can be a basis for the development of novel anti-angiogenic agents.  相似文献   

13.
Focal adhesion kinase (FAK) integrates various extracellular and intracellular signals and is implicated in a variety of biological functions, but its exact role and downstream targeting signals in the regulation of apoptosis in intestinal epithelial cells (IECs) remains unclear. The current study tested the hypothesis that FAK has an antiapoptotic role in the IEC-6 cell line by altering NF-B signaling. Induced FAK expression by stable transfection with the wild-type (WT)-FAK gene increased FAK phosphorylation, which was associated with an increase in NF-B activity. These stable WT-FAK-transfected IECs also exhibited increased resistance to apoptosis when they were exposed to TNF- plus cycloheximide (TNF-/CHX). Specific inhibition of NF-B by the recombinant adenoviral vector containing the IB superrepressor prevented increased resistance to apoptosis in WT-FAK-transfected cells. In contrast, inactivation of FAK by ectopic expression of dominant-negative mutant of FAK (DNM-FAK) inhibited NF-B activity and increased the sensitivity to TNF-/CHX-induced apoptosis. Furthermore, induced expression of endogenous FAK by depletion of cellular polyamines increased NF-B activity and resulted in increased resistance to TNF-/CHX-induced apoptosis, both of which were prevented by overexpression of DNM-FAK. These results indicate that increased expression of FAK suppresses TNF-/CHX-induced apoptosis, at least partially, through the activation of NF-B signaling in IECs. polyamines; -difluoromethylornithine; X-linked inhibitor of apoptosis protein; IB  相似文献   

14.
15.
16.
17.
Interleukin-1 (IL-1) mediates numerous host responses through rapid activation of nuclear factor-kappaB (NF-kappaB), but signal pathways leading to the NF-kappaB activation appear to be complicated and multiplex. We propose a novel regulatory system for NF-kappaB activation by the extracellular signal-related kinase (ERK) pathway. In a human glioblastoma cell line, T98G, IL-1-induced NF-kappaB activation was significantly augmented by the pretreatment of a specific MEK inhibitor, PD98059. In contrast, ectopic expression of a constitutive activated form of Raf (v-Raf) reduced IL-1-induced NF-kappaB activation, and this inhibition was completely reversed by PD98059. Interestingly, PD98059 sustained IL-1-induced NF-kappaB DNA binding activity by an electrophoretic mobility shift assay and also IkappaBalpha degradation, presumably by augmenting and sustaining the proteasome activation. Concomitantly, two NF-kappaB dependent genes, A20 and IkappaBalpha expression were prolonged with PD98059. These data suggested that MEK-ERK pathway exerts a regulatory effect on NF-kappaB activation, providing a novel insight on the role of MEK-ERK pathway.  相似文献   

18.
Spleen tyrosine kinase (Syk), a nonreceptor protein kinase initially found to be expressed only in hemopoietic cells, has now been shown to be expressed in nonhemopoietic cells and to mediate signaling of various cytokines. Whether Syk plays any role in TNF signaling was investigated. Treatment of Jurkat T cells with TNF activated Syk kinase but not ZAP70, another member of Syk kinase family, and the optimum activation occurred at 10 s and with 1 nM TNF. TNF also activated Syk in myeloid and epithelial cells. TNF-induced Syk activation was abolished by piceatannol (Syk-selective inhibitor), which led to the suppression of TNF-induced activation of c- JNK, p38 MAPK, and p44/p42 MAPK. Jurkat cells that did not express Syk (JCaM1, JCaM1/lck) showed lack of TNF-induced Syk, JNK, p38 MAPK, and p44/p42 MAPK activation, as well as TNF-induced IkappaBalpha phosphorylation, IkappaBalpha degradation, and NF-kappaB activation. TNF-induced NF-kappaB activation was enhanced by overexpression of Syk by Syk-cDNA and suppressed when Syk expression was down-regulated by expression of Syk-small interfering RNA (siRNA-Syk). The apoptotic effects of TNF were reduced by up-regulation of NF-kappaB by Syk-cDNA, and enhanced by down-regulation of NF-kappaB by siRNA-Syk. Immunoprecipitation of cells with Syk Abs showed TNF-dependent association of Syk with both TNFR1 and TNFR2; this association was enhanced by up-regulation of Syk expression with Syk-cDNA and suppressed by down-regulation of Syk using siRNA-Syk. Overall, our results demonstrate that Syk activation plays an essential role in TNF-induced activation of JNK, p38 MAPK, p44/p42 MAPK, NF-kappaB, and apoptosis.  相似文献   

19.
Studies were undertaken to determine the effect of the Ras suppressor Rsu-1 on Ras signal transduction pathways in two different cell backgrounds. An expression vector containing the mouse rsu-1 cDNA under the control of a mouse mammary tumor virus promoter was introduced into NIH 3T3 cells and the pheochromocytoma cell line PC12. Cell lines developed in the NIH 3T3 background expressed p33rsu-1 at approximately twice the normal endogenous level. However, PC12 cell clones which expressed p33rsu-1 at an increased level in a regulatable fashion in response to dexamethasone were isolated. Analysis of proteins involved in regulation of Ras and responsive to Ras signal transduction revealed similar changes in the two cell backgrounds in the presence of elevated p33rsu-1. There was an increase in the level of SOS, the guanine nucleotide exchange factor, and an increase in the percentage of GTP-bound Ras. In addition, there was an increase in the amount of p120 Ras-specific GTPase-activating protein (GAP) and GAP-associated p190. However, a decrease in Ras GTPase-activating activity was detected in lysates of the Rsu-1 transfectants, and immunoprecipitated p120 GAP from the Rsu-1 transfectants showed less Ras GTPase-activating activity than GAP from control cells. Activation of Erk-2 kinase by growth factor and tetradecanyol phorbol acetate was greater in the Rsu-1 transfectants than in control cells. However, c-Jun amino-terminal kinase activity (Jun kinase) was not activatable by epidermal growth factor in Rsu-1 PC12 cell transfectants, in contrast to the PC12 vector control cell line. Transient expression of p33rsu-1 in Cos1 cells following cotransfection with either hemagglutinin-tagged Jun kinase or hemagglutinin-tagged Erk-2 revealed that Rsu-1 expression inhibited constitutive Jun kinase activity while enhancing Erk-2 activity. Detection of in vitro binding of Rsu-1 to Raf-1 suggested that in Rsu-1 transfectants, increased activation of the Raf-1 pathway occurred at the expense of activation of signal transduction leading to Jun kinase. These results indicate that inhibition of Jun kinase activation was sufficient to inhibit Ras transformation even in the presence of activated Erk-2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号