首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polarization of the C. elegans zygote along the anterior-posterior axis depends on cortically enriched (PAR) and cytoplasmic (MEX-5/6) proteins, which function together to localize determinants (e.g. PIE-1) in response to a polarizing cue associated with the sperm asters. Using time-lapse microscopy and GFP fusions, we have analyzed the localization dynamics of PAR-2, PAR-6, MEX-5, MEX-6 and PIE-1 in wild-type and mutant embryos. These studies reveal that polarization involves two genetically and temporally distinct phases. During the first phase (establishment), the sperm asters at one end of the embryo exclude the PAR-3/PAR-6/PKC3 complex from the nearby cortex, allowing the ring finger protein PAR-2 to accumulate in an expanding 'posterior' domain. Onset of the establishment phase involves the non-muscle myosin NMY-2 and the 14-3-3 protein PAR-5. The kinase PAR-1 and the CCCH finger proteins MEX-5 and MEX-6 also function during the establishment phase in a feedback loop to regulate growth of the posterior domain. The second phase begins after pronuclear meeting, when the sperm asters begin to invade the anterior. During this phase (maintenance), PAR-2 maintains anterior-posterior polarity by excluding the PAR-3/PAR-6/PKC3 complex from the posterior. These findings provide a model for how PAR and MEX proteins convert a transient asymmetry into a stably polarized axis.  相似文献   

2.
Correct orientation of the mitotic spindle is crucial for the proper segregation of localized determinants and the correct spatial organization of cells in early embryos. The cues dividing cells use to orient their mitotic spindles are currently the subject of intensive investigation in a number of model systems. One of the cues that cells use during spindle orientation is provided by components of the Wnt signaling pathway. Because of its stereotypical cleavage divisions, the availability of Wnt pathway mutants and the ability to perform RNAi, and because cell-cell interactions can be studied in vitro, the C. elegans embryo continues to be a useful system for identifying specific cell-cell interactions in which Wnt-dependent signals polarize the mitotic spindle. This review discusses the evidence for involvement of Wnt signaling during spindle orientation in several contexts in the early C. elegans embryo, a process that involves upstream Wnt effectors but does not involve downstream nuclear effectors of Wnt signaling, and places this Wnt spindle orientation pathway in the larger context of other known modulators of spindle orientation in animal embryos.  相似文献   

3.
BACKGROUND: Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS: We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS: We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.  相似文献   

4.
Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.  相似文献   

5.
6.
Three genetically complementing temperature-sensitive mutants of Caenorhabditis elegans have been studied. Each of the three mutants has two critical times of temperature sensitivity and two distinctive corresponding phenotypes. Exposure to high temperature during gonadogenesis blocks the production of zygotes. Exposure of adults to high temperature interrupts embryogenesis of the zygotes being produced. Each of the mutants carries an autosomal mutation with a maternal effect. These mutants indicate that the individual temperature-sensitive functions are required at least twice during development and that early embryogenesis is dependent on the contribution of these functions from the maternal gonad.  相似文献   

7.
Early embryogenesis of Caenorhabditis elegans provides a striking example of the generation of polarity and the partitioning of cytoplasmic factors according to this polarity. Microfilaments (MFs) appear to play a critical role in these processes. By visualizing the distribution of MFs and by studying the consequences of disrupting MFs for short, defined periods during zygote development, we have generated some new ideas about when and how microfilaments function in the zygote.  相似文献   

8.
Regulated movements of the nucleus are essential during zygote formation, cell migrations, and differentiation of neurons. The nucleus moves along microtubules (MTs) and is repositioned on F-actin at the cellular cortex. Two families of nuclear envelope proteins, SUN and KASH, link the nucleus to the actin and MT cytoskeletons during nuclear movements. However, the role of actin nucleators in nuclear migration and positioning is poorly understood. We show that the branched actin nucleator, Arp2/3, affects nuclear movements throughout embryonic and larval development in C. elegans, including nuclear migrations in epidermal cells and neuronal precursors. In one-cell embryos the migration of the male pronucleus to meet the female pronucleus after fertilization requires Arp2/3. Loss of Arp2/3 or its activators changes the dynamics of non-muscle myosin, NMY-2, and alters the cortical accumulation of posterior PAR proteins. Reduced establishment of the posterior microtubule cytoskeleton in Arp2/3 mutants correlates with reduced male pronuclear migration. The UNC-84/SUN nuclear envelope protein that links the nucleus to the MT and actin cytoskeleton is known to regulate later nuclear migrations. We show here it also positions the male pronucleus. These studies demonstrate a global role for Arp2/3 in nuclear migrations. In the C. elegans one-cell embryo Arp2/3 promotes the establishment of anterior/posterior polarity and promotes MT growth that propels the anterior migration of the male pronucleus. In contrast with previous studies emphasizing pulling forces on the male pronucleus, we propose that robust MT nucleation pushes the male pronucleus anteriorly to join the female pronucleus.  相似文献   

9.
In the Caenorhabditis elegans zygote, polarization of the anteroposterior (AP) axis occurs during a brief period of reorganization that follows fertilization and results in the establishment of discrete cytoplasmic and cortical domains. In the cytoplasm, germ-line or P granules are circulated by an actomyosin-driven fountain flow of cytoplasm and localize to the posterior, while in the cortex, two proteins required for AP polarity, PAR-2 and PAR-3, localize to the posterior and the anterior, respectively. The identity of the positional cue that determines AP axis orientation is not known, although it has been postulated to be a component of the sperm pronucleus/centrosome complex (SPCC) as the position of the SPCC correlates with the orientation of the AP axis and the direction of the fountain flows. Here, we show that mutations in the spd-2 gene disrupt polarization of the AP axis. In mutant zygotes, the fountain flow of cytoplasm and associated asymmetric cortical contractions are absent, P granules do not localize, and cortical PAR-3 does not become asymmetrically distributed. Interestingly, cortical PAR-2 localizes randomly to either or both poles. The random positioning of PAR-2 requires PAR-3 and indicates that a spd-2-dependent mechanism normally modulates PAR-2/PAR-3 interactions to correctly position PAR-2 at the posterior. spd-2 mutations also disrupt formation of the SPCC by delaying and attenuating the formation of sperm asters until after the period of reorganization, suggesting that spd-2 mutations disrupt formation of the positional cue. Our results also indicate that sperm asters are not essential for pronuclear migration but are required for rapid female pronuclear movement and premitotic positioning of the pronuclei.  相似文献   

10.
The influential special issue and overview essay co-edited and co-authored respectively, by Winddance Twine and Charles Gallagher, set out their interpretation of whiteness studies’ genealogy, development and future. In this essay I identify their arguments and critique them in the light of a further eight years’ work on the racialization of white identities produced by the global academy. Particular attention is paid to the proliferation of micro studies about an ever-increasing array of sites, both in thematic and international terms, and to the corpus’ addressing of power relations. Moreover, I underscore Twine and Gallagher’s prescience on the strand of the work they review that bears on the racial project of recuperating white supremacy in a variety of ways, a project that is enjoying heightened visibility in 2016.  相似文献   

11.
Axon pruning has recently been described in the simple nervous system of the nematode Caenorhabditis elegans. Generating excess processes and pruning may be a phylogenetically conserved feature reflecting a flexibility to modify neural circuits.  相似文献   

12.

Background  

Fertilization restores the diploid state and begins the process by which the single-cell oocyte is converted into a polarized, multicellular organism. In the nematode, Caenorhabditis elegans, two of the earliest events following fertilization are secretion of the chitinous eggshell and completion of meiosis, and in this report we demonstrate that the eggshell is essential for multiple developmental events at the one-cell stage.  相似文献   

13.
The human brain contains 100 billion neurons and probably one thousand times more synapses. Such a system can be analyzed at different complexity levels, from cognitive functions to molecular structure of ion channels. However, it remains extremely difficult to establish links between these different levels. An alternative strategy relies on the use of much simpler animals that can be easily manipulated. In 1974, S. Brenner introduced the nematode Caenorhabditis elegans as a model system. This worm has a simple nervous system that only contains 302 neurons and about 7,000 synapses. Forward genetic screens are powerful tools to identify genes required for specific neuron functions and behaviors. Moreover, studies of mutant phenotypes can identify the function of a protein in the nervous system. The data that have been obtained in C. elegans demonstrate a fascinating conservation of the molecular and cellular biology of the neuron between worms and mammals through more than 550 million years of evolution.  相似文献   

14.
Cell migration is a fundamental process in animal development, including development of the nervous system. In C. elegans, the bilateral QR and QL neuroblasts undergo initial anterior and posterior polarizations and migrations before they divide to produce neurons. A subsequent Wnt signal from the posterior instructs QL descendants to continue their posterior migration. Nck-interacting kinases (NIK kinases) have been implicated in cell and nuclear migration as well as lamellipodia formation. Studies here show that the C. elegans MIG-15 NIK kinase controls multiple aspects of initial Q cell polarization, including the ability of the cells to polarize, to maintain polarity, and to migrate. These data suggest that MIG-15 acts independently of the Wnt signal that controls QL descendant posterior migration. Furthermore, MIG-15 affects the later migrations of neurons generated from Q cell division. Finally, a mosaic analysis indicates that MIG-15 acts cell-autonomously in Q descendant migration.  相似文献   

15.
16.
Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.  相似文献   

17.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

18.
During the past decade, it has become apparent that it is within our grasp to understand fully the development and functioning of complex organisms. It is widely accepted that this undertaking must include the elucidation of the genetic blueprint – the genome sequence – of a number of model organisms. As a prelude to the determination of these sequences, clonebased physical maps of the genomes of a number of multicellular animals and plants are being constructed. Yeast artificial chromosome (YAC) vectors, by virtue of their relatively unbiased cloning capabilities and capacity to carry large inserts, have come to play a central role in the construction of these maps. The application of YACs to the physical map of the Caenorhabditis elegans genome has enabled cosmid clone ‘islands’ to be linked together in an efficient manner. The long-range continuity has improved the linkage between the genetic and physical maps, greatly increasing its utility. Since the genome can be represented by a relatively small number of YACs, it has been possible to make replica filters of genomically ordered YACs available to the community at large.  相似文献   

19.
The selective insertion of oxygen into non-activated organic molecules has to date been considered of utmost importance to synthesize existing and next generation industrial chemicals or pharmaceuticals. In this respect, the minimal requirements and high activity of fungal unspecific peroxygenases (UPOs) situate them as the jewel in the crown of C–H oxyfunctionalization biocatalysts. Although their limited availability and development has hindered their incorporation into industry, the conjunction of directed evolution and computational design is approaching UPOs to practical applications. In this review, we will address the most recent advances in UPO engineering, both of the long and short UPO families, while discussing the future prospects in this fast-moving field of research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号