首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cDNA and/or genomic DNA sequences of 13 globulin storage proteins from flowering plants (angiosperms) are now known. They represent 8 genera, 5 families and 5 orders of plants and include one monocotyledonous species. Here, the coding nucleotide and amino acid sequences of these proteins are compared by dot matrix analysis and gross protein domains visualized by hydropathy analyses. The vestigial homologies visualized by these means indicate that all of the globulin storage proteins of flowering plants have emanated from 2 genes that existed at the beginning of angiosperm evolution.A curious polypeptide domain of 150–200 amino acids located near the N terminus is found in a globulin subgroup of 2 genera widely separated phylogenetically. The domain appears to have resulted from an ancient insertion that has been deleted in most of its descendant genes.  相似文献   

2.
Evidence for the sequence of duckweed (Lemna minor) chloroplast 5S rRNA was derived from the analysis of partial and complete enzymic digests of the 32P-labelled molecule. The possible sequence of the chloroplast 5S rRNA from three other flowering plants was deduced by complete digestion with T1 ribonuclease and comparison of the sequences of the oligonucleotide products with homologous sequences in the duckweed 5S rRNA. This analysis indicates that the chloroplast 5S rNA species differ appreciably from their cytosol counterparts but bear a strong resemblance to one another and to the 5S rRNA species of prokaryotes. Structural features apparently common to all 5S rRNA molecules are also discussed.  相似文献   

3.
Recombinant cDNA libraries to poly(A)RNA isolated from mature pollen of Zea mays and Tradescantia paludosa have been constructed. Northern blot analyses indicate that several of the clones are unique to pollen and are not expressed in vegetative tissues. The majority, however, are expressed both in pollen and vegetative tissues. Southern hybridizations show that the pollen specific sequences in corn are present in one or a very few copies in the genome. By using several of the clones as probes, it was found that there are at least two different groups of mRNAs with respect to their synthesis. The mRNAs of the first group represented by the pollen specific clones are synthesized after microspore mitosis and increase in concentration up to maturity. The second group, exemplified by actin mRNA, begins to accumulate soon after meiosis, reaches its maximum by late pollen interphase, and decreases thereafter. Although the actin mRNA and the pollen specific mRNAs studied show very different patterns of initiation of synthesis and accumulation during pollen development, the rates of decline of these mRNAs during the first 60 minutes of germination and pollen tube growth in Tradescantia are similar and reflect the previously observed declines in rates of protein synthesis during this period.  相似文献   

4.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   

5.
6.
We reported previously that the mitochondrial sequence that contains the chloroplast-derived trnH gene has been highly conserved in the region around one terminus of the junction between chloroplast-derived and mitochondrion-specific sequences in most of the gramineous plants analyzed [15]. The results of RT-PCR, northern hybridization, in vitro capping and ribonuclease protection experiments show that the chloroplast-derived trnH gene is transcribed from a putative promoter that is located in the mitochondrion-specific sequence. Gene expression in this region seems to be correlated with the conservation of the sequence at the junction between the chloroplast-derived fragment and the mitochondrion-specific sequence.  相似文献   

7.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

8.
A method is described for the isolation of chloroplast ribosomes from Acetabularia cells in yields sufficient for the characterization of these particles. Ribosomal particles sedimenting with 70S, 56S, 44S, and 30S have been obtained. The monoribosome sediments with 70S and dissociates into a larger 44S and a smaller 30S subunit. The sedimentation behaviour of the particles as well as the equilibrium between monoribosomes and their subunits is not influenced by the centrifugation step as could be revealed by formaldehyde fixation.  相似文献   

9.
Evans RP  Fletcher GL 《The FEBS journal》2005,272(20):5327-5336
Type I antifreeze proteins (AFPs) are usually small, Ala-rich alpha-helical polypeptides found in right-eyed flounders and certain species of sculpin. These proteins are divided into two distinct subclasses, liver type and skin type, which are encoded by separate gene families. Blood plasma from Atlantic (Liparis atlanticus) and dusky (Liparis gibbus) snailfish contain type I AFPs that are significantly larger than all previously described type I AFPs. In this study, full-length cDNA clones that encode snailfish type I AFPs expressed in skin tissues were generated using a combination of library screening and PCR-based methods. The skin clones, which lack both signal and pro-sequences, produce proteins that are identical to circulating plasma AFPs. Although all fish examined consistently express antifreeze mRNA in skin tissue, there is extreme individual variation in liver expression - an unusual phenomenon that has never been reported previously. Furthermore, genomic Southern blot analysis revealed that snailfish AFPs are products of multigene families that consist of up to 10 gene copies per genome. The 113-residue snailfish AFPs do not contain any obvious amino acid repeats or continuous hydrophobic face which typify the structure of most other type I AFPs. These structural differences might have implications for their ice-crystal binding properties. These results are the first to demonstrate a dual liver/skin role of identical type I AFP expression which may represent an evolutionary intermediate prior to divergence into distinct gene families.  相似文献   

10.
The genes for two large subunit proteins, YmL8 and YmL20, of the mitochondrial ribosome of Saccharomyces cerevisiae were cloned by hybridization with synthetic oligonucleotide mixtures corresponding to their N-terminal amino acid sequences. They were termed MRP-L8 and MRP-L20, respectively, and their nucleotide sequences were determined using a DNA sequencer. The MRP-L8 gene was found to encode a 26.8-kDa protein whose deduced amino acid sequence has a high degree of similarity to ribosomal protein L17 of Escherichia coli. The gene MRP-L20 was found to encode a 22.3-kDa protein with a presequence consisting of 18 amino acid residues. By Southern blot hybridization to the yeast chromosomes separated by field-inversion gel electrophoresis, the MRP-L8 and MRP-L20 genes were located on chromosomes X and XI, respectively. Gene disruption experiments indicate that their products, YmL8 and YmL20 proteins, are essential for the mitochondrial function and the absence of these proteins causes instability of the mitochondrial DNA.  相似文献   

11.
12.
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.  相似文献   

13.
G Kispal  P Csere  C Prohl    R Lill 《The EMBO journal》1999,18(14):3981-3989
Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfurase NifS that initiates biogenesis by producing elemental sulfur. The matrix-localized protein is required for synthesis of both mitochondrial and cytosolic Fe/S proteins. The ATP-binding cassette (ABC) transporter Atm1p of the mitochondrial inner membrane performs an essential function only in the generation of cytosolic Fe/S proteins by mediating export of Fe/S cluster precursors synthesized by Nfs1p and other mitochondrial proteins. Assembly of cellular Fe/S clusters constitutes an indispensable biosynthetic task of mitochondria with potential relevance for an iron-storage disease and the control of cellular iron uptake.  相似文献   

14.
Summary In long-term callus cultures of Cyclamen persicum Mill. two types of tissue could be distinguished. One type featured a brown suberised outer layer and was poorly organogenic. The other type was yellowish in appearance and gave rise to many shoot buds. Both types co-existed on the same callus, the former prevailing. Selection for organogenic tissue resulted in cultures yielding approximately three times more petioles than random subcultures. Callus-derived shoots could be rooted and established in the greenhouse. The method allowed for the production of thousands of plants but the regenerants often showed deviant phenotypes and genotypes.Abbreviations BA 6-benzylaminopurine - BMP basal medium propagation - BMR basal medium rooting - DAPI 4,6-diamino-2-phenylindole - KIBA potassium salt of indole-3-butyric acid - kinetin 6-furfurylaminopurine - MS Murashige and Skoog - NAA 1-naphthaleneacetic acid  相似文献   

15.
16.
17.
The protein patterns of chloroplast ribosomes of Acetabularia have been established by means of polyacrylamide gel electrophoresis. The protein patterns of the faster sedimenting 44S ribosomal subunit of A. mediterranea, A. cliftonii, and A. crenulata have been compared and species specific differences are described. The protein patterns of hybrid cells consisting of a host cytoplasm from one species and a nucleus from another species is changed to that of the nucleus donor species after some weeks. The results indicate that at least part of the chloroplast ribosomal proteins are coded by the nuclear genome.  相似文献   

18.
ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms.  相似文献   

19.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

20.
Many eukaryotic genomes have experienced ancient whole-genome duplication (WGD) followed by massive gene loss. These eliminations were not random since some gene families were preferentially retained as duplicates. The gene balance hypothesis suggests that those genes with dosage reduction can imbalance their interacting partners or complex, resulting in decreased fitness. In Arabidopsis, the cytoplasmic ribosomal proteins (RP) are encoded by gene families with at least two members. We have focused our study on the two RPS6 genes in an attempt to understand why they have been retained as duplicates. We demonstrate that RPS6 function is vital for the plant. We also show that reducing the level of RPS6 accumulation (in the knock-out rps6a or rps6b single mutants, or in the double heterozygous RPS6A/rps6a,RPS6B/rps6b), confers a slow growth phenotype (haplodeficiency). Importantly, we demonstrate that the functions of two RPS6 genes are redundant and interchangeable. Finally, like in most other described Arabidopsis rp mutants, we observed that a reduced RPS6 level slightly alters the dorsoventral leaf patterning. Our results support the idea that the Arabidopsis RPS6 gene duplicates were evolutionarily retained in order to maintain an expression level necessary to sustain the translational demand of the cell, in agreement with the gene balance hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号