首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane potential was recorded intracellularly near presynaptic terminals of the excitor axon of the crayfish opener neuromuscular junction (NMJ), while transmitter release was recorded postsynaptically. This study focused on the effects of a presynaptic calcium-activated potassium conductance, gK(Ca), on the transmitter release evoked by single and paired depolarizing current pulses. Blocking gK(Ca) by adding tetraethylammonium ion (TEA; 5-20 mM) to a solution containing tetrodotoxin and aminopyridines caused the relation between presynaptic potential and transmitter release to steepen and shift to less depolarized potentials. When two depolarizing current pulses were applied at 20-ms intervals with gK(Ca) not blocked, the presynaptic voltage change to the second (test) pulse was inversely related to the amplitude of the first (conditioning) pulse. This effect of the conditioning prepulse on the response to the test pulse was eliminated by 20 mM TEA and by solutions containing 0 mM Ca2+/1 mM EGTA, suggesting that the reduction in the amplitude of the test pulse was due to activation of gK(Ca) by calcium remaining from the conditioning pulse. In the absence of TEA, facilitation of transmitter release evoked by a test pulse increased as the conditioning pulse grew from -40 to -20 mV, but then decreased with further increase in the conditioning depolarization. A similar nonmonotonic relationship between facilitation and the amplitude of the conditioning depolarization was reported in previous studies using extracellular recording, and interpreted as supporting an additional voltage-dependent step in the activation of transmitter release. We suggest that this result was due instead to activation of a gK(Ca) by the conditioning depolarization, since facilitation of transmitter release increased monotonically with the amplitude of the conditioning depolarization, and the early time course of the decay of facilitation was prolonged when gK(Ca) was blocked. The different time courses for decay of the presynaptic potential (20 ms) and facilitation (greater than 50 ms) suggest either that residual free calcium does not account for facilitation at the crayfish NMJ or that the transmitter release mechanism has a markedly higher affinity or stoichiometry for internal free calcium than does gK(Ca). Finally, our data suggest that the calcium channels responsible for transmitter release at the crayfish NMJ are not of the L, N, or T type.  相似文献   

2.
Changes in the effective membrane resistance of the abductor muscle of the dactylopodite of the crayfish were used to indicate changes in the GABA concentration in the synaptic cleft. Following bath application of GABA (10?5 to 5 × 10?5M), the muscle membrane resistance decreased and then increased slowly over the next few minutes. Renewing the solution or stirring the bath restored the GABA effect. Higher GABA concentrations produced a large stable decrease in membrane resistance. An active uptake system for GABA in the junctional region is suggested by the observation that the slow increase in membrane resistance following GABA application was decreased by cooling to 2°C or by the addition of known GABA uptake blockers such as L -DABA, β-guanidinopropionic acid, or nipecotic acid. The transport inhibitors, PCMBS and chlorpromazine, produced irreversible decreases in muscle membrane resistance, which precluded examining their effects on GABA inactivation. The decrease in GABA effect was not dependent on the external sodium concentration or on the degree of receptor activation. Nipecotic acid, which blocked GABA inactivation, did not affect the decay of the neurally evoked inhibitory junctional potential.  相似文献   

3.
Presynaptic and postsynaptic potentials were examined by intracellular recording at a crayfish neuromuscular junction. During normal synaptic transmission, the action potentials were recorded in the terminal region of the excitatory axon and postsynaptic responses were obtained in the muscle fibers. We found that it was possible to modify the synaptic transmission by applying depolarizing or hyperpolarizing currents through the presynaptic intracellular electrode. Typically, a 7-15 mV depolarization lasting longer than 50 msec leads to a large (500%) enhancement of transmitter release, even though the preterminal action potential is reduced in amplitude. Hyperpolarization increases the amplitude of the action potential, but slightly reduces the transmitter release. These results are different from those reported for other neuromuscular synapses and the squid giant synapse, but are similar in many respects to the results reported for several invertebrate central synapses. We conclude, first, that different synapses may have markedly different responses to conditioning by membrane polarization and, secondly, that maintained low-level depolarization may induce a potentiated state in the nerve terminal, perhaps brought about by slow entry of calcium.  相似文献   

4.
Calcium-activated potassium conductance noise in snail neurons   总被引:1,自引:0,他引:1  
Current fluctuations were measured in small, 3-6 micrometers-diameter patches of soma membrane in bursting neurons of the snail, Helix pomatia. The fluctuations dramatically increased in magnitude with depolarization of the membrane potential under voltage clamp conditions. Two components of conductance noise were identified in the power spectra calculated from the membrane currents. One component had a corner frequency which increased with depolarization. This component was blocked by intracellular injection of TEA and was relatively insensitive to extracellular calcium levels (as long as the total number of effective divalent cations remained constant). It was identified as fluctuations of the voltage-dependent component of delayed outward current. The second component of conductance noise had a corner frequency which decreased with depolarization. It was relatively unaffected by TEA injection and was reversibly blocked by substitution of extracellular calcium with magnesium, cobalt, or nickel. This second component of noise was identified as fluctuations of the calcium-dependent potassium current. The results suggest that the two components of delayed outward current are conducted through physically distinct channels.  相似文献   

5.
L D Wang  L L Boyarsky 《Life sciences》1979,24(11):1011-1014
Stimulation of the excitatory nerve to the crayfish neuromuscular junction resulted in an 87% increase of the rate of release of 14C-U-L-glutamate above resting levels. The extra release was abolished by stimulating the inhibitory fibers or by addition of GABA to the perfusing fluid. These results argue for the synaptic release of L-glutamate at this junction.  相似文献   

6.
Stimulation-induced changes in presynaptic free calcium concentration ([Ca2+]i) were examined by fluorescent imaging at the spiny lobster excitor motor nerve terminals. The Ca2+ removal process in the terminal was analyzed based on a single compartment model, under the assumption that the Ca2+ removal rate from the terminal cytoplasm is proportional to nth power of [Ca2+]i. During 100 nerve stimuli at 10-100 Hz, [Ca2+]i reached a plateau that increased in a less-than-linear way with stimulation frequency, and the power index, n, was about 2. In the decay time course after stimulation, n changed with the number of stimuli from about 1.4 after 10 stimuli to about 2 after 100 stimuli. With the change of n from 1.4 to 2, the rate became larger at high [Ca2+]i (>1.5 microM), but was smaller at low [Ca2+]i (<1 microM). These results suggest that a cooperative Ca2+ removal mechanism of n = 2, such as mitochondria, may play an important role in the terminal. This view is supported by the gradual increase in the [Ca2+]i plateau during long-term stimulation at 20-50 Hz for 60 s and by the existence of a very slow [Ca2+]i recovery process after this stimulation, both of which may be due to accumulation of Ca2+ in the organelle.  相似文献   

7.
During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules.  相似文献   

8.
Glutamate inhibitors in the crayfish neuromuscular junction   总被引:2,自引:0,他引:2  
1. The effects of chlorisondamine and TI-233 on the crayfish neuromuscular junction were investigated in order to compare the action of glutamate with that of the excitatory transmitter. 2. The glutamate-induced synaptic current was inhibited by both of these two drugs. Excitatory junctional potentials were significantly reduced by chlorisondamine, whereas they were increased by TI-233. 3. It is suggested that chlorisondamine and TI-233 are powerful non-competitive antagonists for glutamate. 4. A quantum analysis of extracellular EJPs demonstrated that chlorisondamine did not possess presynaptic action in the crayfish neuromuscular junction. Chlorisondamine shortened the decay phase of extracellular EJPs, and the decay was frequently fitted by a double exponential in relatively low concentrations. 5. Semilogarithmic plots of the decay phase of the glutamate current evoked by a short glutamate pulse were nearly linear, but they shifted from linearity to some extent in the presence of chlorisondamine, showing prolongation of the glutamate current tails. 6. When TI-233 was added to the bathing solution at a concentration of 0.1 mM, the quantum content of extracellular EJPs was increased by about two times, but the average unit size was not changed. 7. There was no change in the rise time and the decay phase of the glutamate potential in the presence of TI-233. 8. Pharmacological difference between glutamate responses and EJPs was revealed in the presence of chlorisondamine and TI-233. Unless this difference can be explicated with a reasonable explanation on the glutamate transmitter hypothesis, it is difficult to confirm that glutamic acid is an excitatory transmitter at the crayfish neuromuscular junction.  相似文献   

9.
10.
Summary The fine structure of neuromuscular terminals of the single excitor axon was examined in the limb stretcher muscle of the crayfish Procambarus clarkii. A morphometric comparsion of the neuromuscular terminals of the left and right limbs of a control crayfish showed them to be similiar in qualitative as well as quantitative features. The excitor axon to the stretcher muscle of the right side was stimulated, by backfiring its branches in the adjacent opener muscle, at 20 Hz for 4–5 h per day over 4–5 days. The stretcher muscle on the left side was not stimulated and served as a control. Morphometric analysis of stimulated terminals revealed an increase in the number of dense bars and synaptic vesicles compared to their non-stimulated, contralateral counterparts. Since dense bars are regarded as active sites of transmitter release, changes in their number provide a morphological basis for synaptic plasticity.  相似文献   

11.
Mitochondria with high membrane potential (ΔΨm) are enriched in the presynaptic nerve terminal at vertebrate neuromuscular junctions, but the exact function of these localized synaptic mitochondria remains unclear. Here, we investigated the correlation between mitochondrial ΔΨm and the development of synaptic specializations. Using mitochondrial ΔΨm-sensitive probe JC-1, we found that ΔΨm in Xenopus spinal neurons could be reversibly elevated by creatine and suppressed by FCCP. Along naïve neurites, preexisting synaptic vesicle (SV) clusters were positively correlated with mitochondrial ΔΨm, suggesting a potential regulatory role of mitochondrial activity in synaptogenesis. Indicating a specific role of mitochondrial activity in presynaptic development, mitochondrial ATP synthase inhibitor oligomycin, but not mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157, inhibited the clustering of SVs induced by growth factor–coated beads. Local F-actin assembly induced along spinal neurites by beads was suppressed by FCCP or oligomycin. Our results suggest that a key role of presynaptic mitochondria is to provide ATP for the assembly of actin cytoskeleton involved in the assembly of the presynaptic specialization including the clustering of SVs and mitochondria themselves.  相似文献   

12.
Long-term facilitation was induced by 20-Hz stimulation of the motor axon innervating the opener muscle of the crayfish, Procambarus clarkii. Excitatory postsynaptic potentials remained potentiated for several hours after stimulation. Structural correlates of potentiation were sought. Nerve terminals of the motor axon were fixed for electron microscopy in unstimulated preparations (controls), and during and after 20-Hz stimulation. Synapses were reconstructed from micrographs obtained from serial sections. Synaptic contact area and the number of vesicles at the presynaptic membrane did not change after 20-Hz stimulation, but the latter decreased during stimulation. Presynaptic dense bars ("active zones") decreased in number during and increased after stimulation, while perforated synapses increased after stimulation. Modification of presynaptic structures occurs rapidly and may be linked to long-lasting changes in quantal content of transmission.  相似文献   

13.
14.
The mechanism of action of chlordimeform on the mealworm nerve-muscle preparation was studied with microelectrodes. Chlordimeform affected neither the mean amplitude nor the frequency of spontaneous miniature excitatory postsynaptic potentials. Extracellular focal recordings show that in the presence of 0.8 mM chlordimeform the presynaptic spike is almost unchanged, but the quantal content for evoked transmitter release is reduced. It is suggested that chlordimeform decreases the influx of calcium at the presynaptic terminal during the active phase of the nerve terminal action potential, thereby inhibiting evoked transmitter release.  相似文献   

15.
16.
17.
18.
Summary Outside-out patches from membrane of muscles of crayfish (Austropotamobius torrentium) were excised, and L-glutamate (glu) was applied to these patches in pulses of different duration, performing a concentration step within about 0.2 ms. While a uniform population of cationic channels is seen in equilibrium applications of glu, four kinetically different channel types were revealed by the pulse applications of glu. All these channel types had the same single channel conductance and durations of elementary short single channel openings and closings, and they thus form a family of channels. Type I, incompletely desensitizing channels reacted to a pulse of 10 mM glu with a peak open probability of 0.7 within 0.3 ms. Thereafter open probability decayed with a time constant of desensitization of about 5 ms, reaching a plateau of about 1/20 peak probability which was maintained as long as 10 mM glu were present. The peak probabilities of channel opening were proportional to approximately power 2.5 of the glu concentration, for low concentrations. Type II, completely desensitizing channels also were activated very rapidly by glu pulses, but their time constant of desensitization was 1–2 ms, and no channel openings were observed after more than 10 ms presence of a high glu concentration. The peak probabilities of channel opening rose with about the 5th power of glu concentration (for low concentrations). Type III, non-desensitizing channels, were observed relatively rarely. They were activated much more slowly and reached much lower probabilities of opening than type I and II channels. They did not show appreciable desensitization. Type IV, short-opening channels, develop sometimes from type I channels while recording, and may revert to the type I. Type IV channels show an additional open time component of 0.08 ms average duration, and a relatively long additional closed time of on average 1.3 ms. In addition to channel measurements, distributions of amplitudes and time courses of macroscopic quantal currents were determined. It is discussed in which way the different channel types may contribute to the quantal currents.  相似文献   

19.
The classical model of quantal release of neurotransmitter assumes that a fixed number of quantal units are available for release in the presynaptic terminal, and that each unit has the same probability of being released. This model also assumes that different units are released independently of one another. We consider two variations of the classical model. In the first case we assume that release is independent, but with potentially different release probabilities at different sites. In the second case we allow for dependence among the release units. A maximum likelihood procedure for the estimation of model parameters is developed, and an estimator of the number of quantal units is proposed. The performance of the method is assessed through a simulation study, and the procedures are applied to the analysis of a sequence of post-synaptic potentials recorded intracellularly at the crayfish neuromuscular junction. Goodness of fit and hypothesis test procedures reject the classical model in favor of an independent release mechanism with differing release probabilities. A more general release mechanism, allowing for dependence in the release process, also provides a good fit to the data analyzed.  相似文献   

20.
4-Aminopyridine markedly potentiates transmitter release at the frog pectoris neuromuscular junction by increasing the quantal content even when applied at low concentrations (5-20 microM). This enhancement of transmitter release is associated with greater minimum synaptic latency, but the dispersion of the synaptic latencies does not appear much affected. This is in contrast with the action of tetraethylammonium (0.2-0.5 mM) in which case similar enhancement of transmitter release results not only in larger minimum synaptic latency but also in greater dispersion of the synaptic latencies. The time course of transmitter release associated with enhanced transmitter output is hence much more prolonged in the presence of tetraethylammonium than 4-aminopyridine, at least for low concentrations of 4-aminopyridine (5-20 microM). This indicates that their presynaptic actions differ significantly. This conclusion is further strengthened by the finding that unlike tetraethylammonium, 4-aminopyridine induces bursts of release, presumably by producing multiple action potentials in the nerve terminal. Tetraethylammonium probably acts by blocking the delayed potassium conductance, but the blockade of Ca2+-activated K+ conductance cannot be excluded. 4-Aminopyridine, however, probably blocks the fast inactivating (IA) K+ current, but it also may be acting directly on the voltage-dependent Ca2+ conductance or on the intracellular Ca2+ buffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号