首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane separation and chromatographic technologies are regarded as an attractive alternative to conventional academic small-scale ultracentrifugation procedures used for retrovirus purification. However, despite the increasing demands for purified retroviral vector preparations, new chromatography adsorbents with high specificity for the virus have not been reported. Heparin affinity chromatography is presented here as a novel convenient tool for retrovirus purification. The ability of bioactive retroviral particles to specifically bind to heparin ligands immobilized on a chromatographic gel is shown. A purification factor of 63 with a recovery of 61% of functional retroparticles was achieved using this single step. Tentacle heparin affinity supports captured retroviral particles more efficiently than conventional heparin affinity chromatography supports with which a lower recovery was obtained (18%). Intact, infective retroviral particles were recovered by elution with low salt concentrations (350 mM NaCl). Mild conditions for retrovirus elution from chromatographic columns are required to preserve virus infectivity. VSV-G pseudotyped retroviruses have shown to be very sensitive to high ionic strength, losing 50% of their activity and showing membrane damage after a short exposure to 1M NaCl. We also report a complete scaleable downstream processing scheme for the purification of MoMLV-derived vectors that involves sequential microfiltration and ultra/diafiltration steps for virus clarification and concentration respectively, followed by fractionation by heparin affinity chromatography and final polishing by size-exclusion chromatography. Overall, by using this strategy, a 38% yield of infective particles can be achieved with a final purification factor of 2,000.  相似文献   

2.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

3.
The 94-kDa glucose-regulated protein (GRP94) is a glycoprotein in the endoplasmic reticulum (ER). It has been characterized as a Ca2+-binding protein and a molecular chaperone. In this report we show that highly purified GRP94 exhibits an active Mg2+-dependent serine kinase activity (termed 94-kinase). The 94-kinase can be recovered from ER membrane fractions and is able to phosphorylate both the constitutive and stress-induced forms of GRP94, correlating with their induction kinetics. The 94-kinase activity is distinct from casein kinase II. In contrast to the heat-stable, Ca2+-dependent autophosphorylation activity recently reported for GRP94, the labile 94-kinase activity is inhibited by Ca2+. We determined that the phosphopeptide map of in vitro phosphorylated GRP94 by the 94-kinase resembles that of the in vivo phosphorylated GRP94. Further, the 94-kinase activity can be specifically stimulated by GRP78, a coregulated protein in the ER known to interact with GRP94. J. Cell. Physiol. 170:115–129, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Vaccination of mice with GRP94/gp96, the endoplasmic reticulum Hsp90, elicits a variety of immune responses sufficient for tumor rejection and the suppression of metastatic tumor progression. Macrophages are a prominent GRP94/gp96 target, with GRP94/gp96 reported to activate macrophage NF-kappa B signaling and nitric oxide production, as well as the MAP kinase p38, JNK, and ERK signaling cascades. However, recent studies report that heat shock protein elicited macrophage activation is due, in large part, to contaminating endotoxin. To examine the generality of this finding, we have investigated the role of endotoxin in GRP94/gp96-elicited macrophage activation. We report that GRP94/gp96 binds endotoxin in a high-affinity, saturable, and specific manner. Low endotoxin calreticulin and GRP94/gp96 were purified, the latter using a novel method of depyrogenation; this resulted in GRP94/gp96 and calreticulin preparations with endotoxin levels substantially lower than those of previously reported preparations. Low endotoxin GRP94/gp96 retained its native conformation, ligand binding activity, and in vitro chaperone function, yet did not activate macrophage NF-kappa B signaling, nitric oxide production or inducible nitric-oxide synthase production. Low endotoxin GRP94/gp96 and calreticulin did, however, elicit a marked increase in ERK phosphorylation at protein concentrations as low as 2 microg/ml. These results are discussed with respect to current understanding of the contributions of endotoxin and heat shock/chaperone proteins to the stimulation of innate immune responses.  相似文献   

5.
GRP94 (gp96)-peptide complexes can be internalized by APCs and their associated peptides cross-presented to yield activation of CD8(+) T cells. Investigations into the identity (or identities) of GRP94 surface receptors have yielded conflicting results, particularly with respect to CD91 (LRP1), which has been proposed to be essential for GRP94 recognition and uptake. To assess CD91 function in GRP94 surface binding and endocytosis, these parameters were examined in mouse embryonic fibroblast (MEF) cell lines whose expression of CD91 was either reduced via RNA interference or eliminated by genetic disruption of the CD91 locus. Reduction or loss of CD91 expression abrogated the binding and uptake of receptor-associated protein, an established CD91 ligand. Surface binding and uptake of an N-terminal domain of GRP94 (GRP94.NTD) was unaffected. GRP94.NTD surface binding was markedly suppressed after treatment of MEF cell lines with heparin, sodium chlorate, or heparinase II, demonstrating that heparin sulfate proteoglycans can function in GRP94.NTD surface binding. The role of CD91 in the cross-presentation of GRP94-associated peptides was examined in the DC2.4 dendritic cell line. In DC2.4 cells, which express CD91, GRP94.NTD-peptide cross-presentation was insensitive to the CD91 ligands receptor-associated protein or activated α(2)-macroglobulin and occurred primarily via a fluid-phase, rather than receptor-mediated, uptake pathway. These data clarify conflicting data on CD91 function in GRP94 surface binding, endocytosis, and peptide cross-presentation and identify a role for heparin sulfate proteoglycans in GRP94 surface binding.  相似文献   

6.
Heparin interacts with protein kinases in various ways; the different patterns of behavior of heparin towards protein kinases contributes to the characterization of these enzymes. We studied the interactions between heparin and a new type of tyrosine kinase extracted from the normal human red cell membrane. We found that heparin inhibited kinase activity by competition with ATP. Furthermore the interaction of heparin with the red cell membrane tyrosine kinase allowed us to use heparin-agarose chromatography as a step towards tyrosine kinase purification.  相似文献   

7.
GRP94 is an inducible resident endoplasmic reticulum/sarcoplasmic reticulum (ER/SR) glycoprotein that functions as a protein chaperone and Ca(2+) regulator. GRP94 has been reported to be a substrate for protein kinase CK2 in vitro, although its phosphorylation in intact cells remains unreported. In Sf21 insect cells, overexpression of canine GRP94 led to the appearance of a multiplet of three or more molecular-mass isoforms which was reduced to a single mobility form following treatment of cells with tunicamycin, suggesting stable accumulations of consecutively modified protein. Metabolic labeling of Sf21 cells with (32)P(i) led to a constitutive phosphorylation of GRP94 which, based upon phosphopeptide mapping, occurred specifically on CK2-sensitive sites. Among the GRP94 multiplet, however, only the lowest mobility form of GRP94 was phosphorylated, even though in vitro phosphorylation of GRP94 by CK2 led to phosphorylation of all glycosylated forms. The (32)P(i) incorporation into GRP94 indicated a slow turnover of phosphate incorporation that was unaffected by inhibition of biosynthesis, resulting in a steady-state level of phospho-GRP94 on CK2 sites. These data support a role for protein kinase CK2 in the cell biology for GRP94 and other resident ER/SR proteins that may occur in ER compartments.  相似文献   

8.
Protein kinases can adopt multiple protein conformations depending on their activation status. Recently, in drug discovery, a paradigm shift has been initiated, moving from inhibition of fully activated, phosphorylated kinases to targeting the inactive, unphosphorylated forms. For identification and characterization of putative inhibitors, also interacting with the latent kinase conformation outside of the kinase domain, highly purified and homogeneous protein preparations of unphosphorylated kinases are essential. The kinetic parameters of nonphosphorylated kinases cannot be assessed easily by standard kinase enzyme assays as a result of their intrinsic autophosphorylation activity. Kinetic binding rate constants of inhibitor-protein interactions can be measured by biophysical means upon protein immobilization on chips. Protein immobilization can be achieved under mild conditions by binding biotinylated proteins to streptavidin-coated chips, exploiting the strong and highly specific streptavidin–biotin interaction. In the work reported here, the cytoplasmic domains of insulin receptor and insulin-like growth factor-1 receptor fused to a biotin ligase recognition sequence were coexpressed individually with the phosphatase YopH and the biotin-protein ligase BirA upon triple infection in insect cells. Tandem affinity purification yielded pure cytoplasmic kinase domains as judged by gel electrophoresis and HPLC. Liquid chromatography-mass spectrometry analysis showed the absence of any protein phosphorylation. Coexpression of BirA led to quantitative and site-specific biotinylation of the kinases, which had no influence on the catalytic activity of the kinases, as demonstrated by the identical phosphorylation pattern upon autoactivation and by enzymatic assay. This coexpression approach should be applicable to other protein kinases as well and should greatly facilitate the production of protein kinases in their phosphorylated and unphosphorylated state suitable for enzymatic and biophysical studies.  相似文献   

9.
10.
A new procedure for the isolation, purification and quantification of the product of the oncosuppressor gene brca1 in breast tissues, was carried out. It involves internal cell protein [35S]methionine labelling followed by two perfusion chromatographies. The first one is heparin affinity chromatography, to purify all of the cell DNA-binding proteins. A subsequent specific immunoprecipitation of BRCA1 protein was performed with an antibody raised against BRCA1. The immune complex was isolated using the second chromatographic step, Protein A affinity chromatography. The amount of BRCA1 expressed by cells was expressed as a ratio, in percent, calculated as follows: 100× amount of labelled DNA-binding proteins (dpm) that bound specifically to the anti-BRCA1 polyclonal antibodies (K-18)/amount of whole labelled DNA-binding protein (dpm) purified on a heparin column. Applications to MCF7 and T-47D human breast tumour cell lines, which were treated or not using 2 mM sodium butyrate demonstrated an increase in BRCA1 protein expression.  相似文献   

11.
A simplified procedure for casein kinase 2 purification from bovine brain is described. The purification procedure consists of two affinity chromatography steps, using heparin and polyethylenimine immobilized on a synthetic matrix (Toyopearl 650M). The adsorption and elution conditions for each column were optimized, resulting in a simple elution protocol for each column. A stable, highly purified casein kinase 2 preparation was obtained in 4 h using this procedure. Polyethylenimine was shown to stimulate the casein kinase 2 activity using exogeneous substrates (casein, calmodulin, MAP2, and tau) but not the enzyme's autophosphorylation activity. The polyethylenimine stimulation could be overcome by applying a mass excess of the casein kinase 2 inhibitor, heparin.  相似文献   

12.
We have previously reported that murine fetal alpha-fetoprotein (AFP) incubated for 1.0 h at room temperature in the presence of high concentrations of estradiol (E2) generates a growth-regulatory product designated AFP/E2. Subsequently we developed a bioassay in the immature mouse uterus to measure both the growth-inhibitory and growth-enhancing properties of AFP. In the present study, we have employed this bioassay to monitor each of the amniotic fluid-derived AFP isolates fractionated by various chromatographic and electrophoretic techniques. The objective of this investigation was to partition and isolate the various molecular forms of AFP contained in amniotic fluid and determine whether the growth-regulatory activities resided with one or more of the fractions. AFP was fractionated by three different chromatographic/electrophoretic methods: E2 affinity chromatography, preparative polyacrylamide-gel electrophoresis (PAGE), and high-performance liquid chromatography (HPLC); and one immunoaffinity method: gel-entrapped antibody filtration (GAF). Whereas E2 affinity chromatography separated the biological activity of AFP into inhibitory and possibly enhancing activities, PAGE purification yielded three fractions: an inhibitor, an enhancer, and a fraction without growth-regulatory activity. Immunoaffinity separation yielded an AFP product with only inhibitory activities. In comparison, fractionation by HPLC produced seven AFP fractions in which only three displayed growth-regulatory activities: two inhibitory and one enhancing. After subsequent HPLC rechromatography of these fractions, none displayed any biological activity. Thus, murine AFP derived from amniotic fluid is composed of potential heterofunctional forms that, depending on their relative abundance in the preparation, constitute a mixture capable of either (a) growth inhibition, (b) no effect, or (c) growth enhancement.  相似文献   

13.
采用硫酸铵沉淀法和GSH-agarose亲和层析法,对中华稻蝗Oxya chinensis(Thunberg)5龄若虫谷胱甘肽S-转移酶(glutathione S-transferases,GSTs)进行了分离纯化.结果表明:经硫酸铵沉淀,饱和度在60%-80%下沉淀中GSTs比活力较高,饱和度90%时比活力达到最高...  相似文献   

14.
Carboxymethyl dextrans (CM-Ds) were used on an HPLC ion-exchange column to obtain significantly enriched alkaline phosphatase (EC 3.1.3.1) from a sample of Escherichia coli periplasmic space proteins without significant loss of enzymatic activity. The ability of CM-Ds to separate alkaline phosphatase even when the column was 80-85% saturated with protein demonstrates the potential for high column capacity using CM-Ds. In addition, the fractions containing alkaline phosphatase and CM-Ds were reapplied to the same ion-exchange column under different buffer conditions and purified to homogeneity by salt gradient elution chromatography, thus demonstrating the compatibility of CM-Ds with the latter chromatographic method. The two-step chromatographic procedure yielded enzyme of purity comparable to that of electrophoretically purified E. coli alkaline phosphatase obtained commercially. These studies demonstrate that HPLC displacement chromatography is a mild procedure which allows rapid, quantitative purification of an enzyme. Scaling up with larger columns should allow purification of enzymes of a commercial basis.  相似文献   

15.
Cyclic GMP-activated protein kinase from Dictyostelium discoideum   总被引:2,自引:0,他引:2  
Cells of Dictyostelium discoideum respond to their chemoattractants, cAMP and folate, with a rapid increase of the cellular cGMP content. The molecular mechanisms of cGMP action are not understood. Since in many biological systems cGMP-activated protein kinase is a prominent cGMP acceptor, we searched for such an enzyme in D. discoideum. By means of affinity chromatography on cGMP-Sepharose and other chromatographic procedures (DEAE-Trisacryl, CM-Trisacryl), we separated a novel protein kinase. This preparation did not show any regulation by cGMP and may represent an enzyme modified by proteolysis. In order to establish a rapid and efficient purification step, an antiserum against the kinase preparation was raised and coupled to Sepharose. Chromatography of the supernatant from a cell homogenate on this antibody matrix yielded a protein kinase that was activated 3-fold by cGMP. Half-maximal activation occurred at about 1 nM cGMP. Cyclic AMP at a 20-fold higher concentration also activated the protein kinase. On a Superose 6HR column the cGMP-activated protein kinase eluted in the same volume as enolase (Mr = 82,000).  相似文献   

16.
The molecular chaperone heat shock protein 90 (Hsp90) serves essential roles in the regulation of signaling protein function, trafficking, and turnover. Hsp90 function is intimately linked to intrinsic ATP binding and hydrolysis activities, the latter of which is under the regulatory control of accessory factors. Glucose-regulated protein of 94 kDa (GRP94), the endoplasmic reticulum Hsp90, is highly homologous to cytosolic Hsp90. However, neither accessory factors nor adenosine nucleotides have been clearly implicated in the regulation of GRP94-client protein interactions. In the current study, the structural and regulatory consequences of adenosine nucleotide binding to GRP94 were investigated. We report that apo-GRP94 undergoes a time- and temperature-dependent tertiary conformational change that exposes a site(s) of protein-protein interaction; ATP, ADP, and radicicol markedly suppress this conformational change. In concert with these findings, ATP and ADP act identically to suppress GRP94 homooligomerization, as well as both local and global conformational activity. To identify a role(s) for ATP or ADP in the regulation of GRP94-client protein interactions, immunoglobulin (Ig) heavy chain folding intermediates containing bound GRP94 and immunoglobulin binding protein (BiP) were isolated from myeloma cells, and the effects of adenosine nucleotides on chaperone-Ig heavy chain interactions were examined. Whereas ATP elicited efficient release of BiP from both wild-type and mutant Ig heavy chain intermediates, GRP94 remained in stable association with Ig heavy chains in the presence of ATP or ADP. On the basis of these data, we propose that structural maturation of the client protein substrate, rather than ATP binding or hydrolysis, serves as the primary signal for dissociation of GRP94-client protein complexes.  相似文献   

17.
Interferon-treated mouse and human cells show enhanced levels of a protein kinase activity which is manifested by the phosphorylation of endogenous 67,000 and 72,000 Mr proteins, respectively. Enhanced levels of such kinase activity are also detectable in the plasma of patients treated with interferon and in the plasma and tissues of interferon-treated mice. A rapid and efficient method of assay for these protein kinase activities is described. The samples are first incubated with heparin (100 units/ml), which results in the inhibition of different protein kinase activities, but not the one mediated by interferon. The latter one is then assayed after partial purification on poly(rI):(rC)-Sepharose or poly(rG)-Sepharose. The protein kinase from human and mouse cells in culture and from the different tissues of mice binds specifically to poly(rI):(rC)-Sepharose. On the other hand, the protein kinase activity from both mouse and human plasma shows a higher affinity toward poly(rG)-Sepharose. These methods are successfully applied for the determination of the interferon-mediated protein kinase activity from tissue extracts and plasma.  相似文献   

18.
The eosinophil cationic protein (ECP) is an eosinophil‐secreted RNase involved in the immune host defense, with a cytotoxic activity against a wide range of pathogens. During inflammation and eosinophilia disorders, ECP is secreted to the inflammation area, where it would contribute to the immune response. ECP secretion causes also severe damage to the host own tissues. ECP presents a high affinity for heparin and this property might be crucial for its immunomodulating properties, antipathogen action, and its toxicity against eukaryotic cells. ECP, also known as human RNase 3, belongs to the mammalian RNase A superfamily and its RNase activity is required for some of its biological properties. We have now proven that ECP heparin binding affinity depends on its RNase catalytic site, as the enzymatic activity is blocked by heparin. We have applied molecular modeling to analyze ECP binding to heparin representative probes, and identified protein residues at the catalytic and substrate binding sites that could contribute to the interaction. ECP affinity for heparin and other negatively charged glycosaminoglycans (GAGs) can explain not only its binding to the eukaryote cells glycocalix but also the reported high affinity for the specific carbohydrates at bacteria cell wall, promoting its antimicrobial action. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Previous work has shown that the study of host immune responses against Mycobacterium tuberculosis, the causative agent of tuberculosis, requires the availability of multiple mycobacterial antigens. Since purification of protein from M. tuberculosis cells is extremely cumbersome, we developed a protocol for purifying milligram amounts of ten recombinant antigens of M. tuberculosis from E. coli cells. Purified proteins were immunologically active and free of contaminants that confound interpretation of cell-based immunological assays. The method utilizes a three-step purification protocol consisting of immobilized metal-chelate affinity chromatography, size exclusion chromatography and anion-exchange chromatography. The first two chromatographic steps yielded recombinant protein free of protein contaminants, while the third step (anion-exchange chromatography) efficiently removed E. coli lipopolysaccharide, a potent polyclonal activator of lymphoid cells. The recombinant proteins were immunologically indistinguishable from their native (i.e., purified from M. tuberculosis) counterparts. Thus the method provides a way to utilize recombinant proteins for immunological analyses that require highly purified antigens.  相似文献   

20.
Glucose-regulated protein 94 (GRP94/gp96), the endoplasmic reticulum heat shock protein 90 paralog, elicits both innate and adaptive immune responses. Regarding the former, GRP94/gp96 stimulates APC cytokine expression and dendritic cell maturation. The adaptive component of GRP94/gp96 function reflects a proposed peptide-binding activity and, consequently, a role for native GRP94/gp96-peptide complexes in cross-presentation. It is by this mechanism that tumor-derived GRP94/gp96 is thought to suppress tumor growth and metastasis. Recent data have demonstrated that GRP94/gp96-elicited innate immune responses can be sufficient to suppress tumor growth and metastasis. However, the immunological processes activated in response to tumor Ag-negative sources of GRP94/gp96 are currently unknown. We have examined the in vivo immunological response to nontumor sources of GRP94/gp96 and report that administration of syngeneic GRP94/gp96- or GRP94/gp96-N-terminal domain-secreting KBALB fibroblasts to BALB/c mice stimulates CD11b(+) and CD11c(+) APC function and promotes bystander activation of CD4(+) T cell Th1 cytokine production. Only modest activation of CD8(+) T cell or NK cell cytolytic function was observed. The GRP94/gp96-dependent induction of CD4(+) T cell cytokine production was markedly inhibited by carrageenan, indicating an essential role for APC in this response. These results identify the bystander activation of CD4(+) T lymphocytes as a previously unappreciated immunological consequence of GRP94/gp96 administration and demonstrate that GRP94/gp96-elicited alterations in the in vivo cytokine environment influence the development of CD4(+) T cell effector functions, independently of its proposed function as a peptide chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号