首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neural crest gives rise to glial cells in the peripheral nervous system. Among the peripheral glia, Schwann cells form the myelin often wrapping the peripheral axons. Compared to other crest-derived cell lineages such as neurons, the analysis of fate determination and subsequent differentiation of Schwann cells is not well advanced, partly due to the lack of early markers of this phenotype. In this study, we have identified a gene, uniquely expressed in avian embryo Schwann cell precursors, which encodes a novel secreted factor, designated Seraf (Schwann cell-specific EGF-like repeat autocrine factor). Expression of Seraf and P0 delineates the earliest phase of Schwann cell differentiation. Seraf binds to neural crest cells and Schwann cells, and affects the distribution of Schwann cells, when introduced to chicken embryos during neural crest migration. Our results suggest an autocrine function of Seraf and provide a significant step to understand the developmental processes of Schwann cell lineage.  相似文献   

2.
An attempt was made to culture neural crest cells of the turtle embryo in vitro. Trunk neural tubes from the St. 9/10 embryos were explanted in culture dishes. The developmental potency of the turtle neural crest cells in vitro was shown to be essentially similar to that of avian neural crest cells, although they seem to be more sensitive to melanocyte-stimulating hormone (MSH) stimulation. We describe conditions under which explanted neural tube gives rise to neural crest cells that differentiate into neuronal cells and melanocytes. The potency of melanocyte differentiation was, found to vary according to the concentration of fetal bovine serum (FBS, from 5 to 20%). Melanization of neural crest cells cultured in the medium containing FBS and α-MSH was more extensive than those cultured with FBS alone, combinations of FBS and chick embryo extract, or turtle embryo extract. These culture conditions seem to be useful for the study of the developmental potency of the neural crest cells as well as for investigating local environmental factors.  相似文献   

3.
4.
Previously, we have demonstrated that a factor present in chick embryo extract or medium conditioned by neural tube cells supports adrenergic differentiation of some neural crest cells in vitro. These studies have been extended here to examine the effects of this factor(s) on the development of enzymes involved in neurotransmitter biosynthesis. The time course of expression of choline acetyltransferase (ChAT), a marker for cholinergic cells, and dopamine-beta-hydroxylase (DBH), a marker for adrenergic cells, was examined in neural crest cell cultures grown under three conditions: in medium containing 10% embryo extract, in medium containing 2% embryo extract, and in medium containing 2% embryo extract that was conditioned by neural tube cells (NTCM). Significant levels of DBH activity were measured in neural crest cell cultures grown in 10% embryo extract containing medium or in NTCM, while only low levels were present in cultures grown in medium containing 2% embryo extract. In contrast, ChAT activity was inhibited by NTCM in comparison to levels in both 10 and 2% embryo extract containing medium. As a preliminary characterization of the factor(s) present in chick embryo extract, we have fractionated embryo extract and find that a pool of 10 kDa or less can support adrenergic differentiation of some neural crest cells. These results suggest that low molecular weight factors present in embryo extract and NTCM support adrenergic expression of neural crest cells, whereas NTCM suppresses cholinergic expression.  相似文献   

5.
6.
How different neural crest derivatives differentiate in distinct embryonic locations in the vertebrate embryo is an intriguing issue. Many attempts have been made to understand the underlying mechanism of specific pathway choices made by migrating neural crest cells. In this speculative review we suggest a new mechanism for the regulation of neural crest cell migration patterns in avian and mammalian embryos, based on recent progress in understanding the expression and activity of receptor tyrosine kinases during embryogenesis. Distinct subpopulations of crest-derived cells express specific receptor tyrosine kinases while residing in a migration staging area. We postulate that the differential expression of receptor tyrosine kinases by specific subpopulations of neural crest cells allows them to respond to localized growth factor ligand activity in the embryo. Thus, the migration pathway taken by neural crest subpopulations is determined by their receptor tyrosine kinase response to the differential localization of their cognate ligand.  相似文献   

7.
The neural crest is a transitory and pluripotent structure of the vertebrate embryo composed of cells endowed with developmentally regulated migratory properties. We review here a series of studies carried out both in vivo and in vitro on the ontogeny of the neural crest in the avian embryo. Through in vivo studies we established the fate map of the neural crest along the neuraxis prior to the onset of the migration and we demonstrated the crucial role played by the tissue environment in which the crest cells migrate in determining their fate. Moreover, the pathways of neural crest cell migration could also be traced by the quail-chick marker system and the use of the HNK1/NC1 monoclonal antibody (Mab). A large series of clonal cultures of isolated neural crest cells showed that, at migration time, most crest cells are pluripotent. Some, however, are already committed to a particular pathway of differentiation. The differentiation capacities of the pluripotent progenitors are highly variable from one to the other cell. Rare totipotent progenitors able to give rise to representatives of all the phenotypes (neuronal, glial, melanocytic, and mesectodermal) encountered in neural crest derivatives were also found. As a whole we propose a model according to which totipotent neural crest cells become progressively restricted (according to a stochastic rather than a sequentially ordered mechanism) in their potentialities, while they actively divide during the migration process. At the sites of gangliogenesis, selective forces allow only certain crest cells potentialities to be expressed in each type of peripheral nervous system (PNS) ganglia. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Avian neural crest cells migrate on precise pathways to their target areas where they form a wide variety of cellular derivatives, including neurons, glia, pigment cells and skeletal components. In one portion of their pathway, trunk neural crest cells navigate in the somitic mesoderm in a segmental fashion, invading the rostral, while avoiding the caudal, half-sclerotome. This pattern of cell migration, imposed by the somitic mesoderm, contributes to the metameric organization of the peripheral nervous system, including the sensory and sympathetic ganglia. At hindbrain levels, neural crest cells also travel from the neural tube in a segmental manner via three migratory streams of cells that lie adjacent to even-numbered rhombomeres. In this case, the adjacent mesoderm does not possess an obvious segmental organization, compared to the somitic mesoderm at trunk levels. Thus, the mechanisms by which the embryo controls segmentally-organized cell migrations have been a fascinating topic over the past several years. Here, I discuss findings from classical and recent studies that have delineated several of the tissue, cellular and molecular elements that contribute to the segmental organization of neural crest migration, primarily in the avian embryo. One common theme is that neural crest cells are prohibited from entering particular territories in the embryo due to the expression of inhibitory factors. However, permissive, migration-promoting factors may also play a key role in coordinating neural crest migration.  相似文献   

9.
We found previously that neural crest cells in turtle embryos migrated into the lung buds and melanocytes were located in the lungs. The finding suggested to us that the lungs provide a stimulatory factor(s) to the differentiation of neural crest cells into melanocytes. We have established lung cell lines to facilitate analysis of the interactions of neural crest cells with the environment in melanocyte development. One cell line, TLC-2, was found to produce a putative melanization-stimulating activity (MSA), which promoted the melanocyte differentiation in vitro of avian neural crest cells. The TLC-2-derived MSA was different from that of basic fibroblast growth factor (bFGF), α-melanocyte stimulating hormone (α-MSH), and steel factor (SLF). Its molecular weight was estimated to be within the range of 150 kD. Our findings suggest that MSA may be a novel factor exercising a positive control over melanocyte differentiation.  相似文献   

10.
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.  相似文献   

11.
The cell substratum attachment (CSAT) antibody recognizes a 140-kD cell surface receptor complex involved in adhesion to fibronectin (FN) and laminin (LM) (Horwitz, A., K. Duggan, R. Greggs, C. Decker, and C. Buck, 1985, J. Cell Biol., 101:2134-2144). Here, we describe the distribution of the CSAT antigen along with FN and LM in the early avian embryo. At the light microscopic level, the staining patterns for the CSAT receptor and the extracellular matrix molecules to which it binds were largely codistributed. The CSAT antigen was observed on numerous tissues during gastrulation, neurulation, and neural crest migration: for example, the surface of neural crest cells and the basal surface of epithelial tissues such as the ectoderm, neural tube, notochord, and dermomyotome. FN and LM immunoreactivity was observed in the basement membranes surrounding many of these epithelial tissues, as well as around the otic and optic vesicles. In addition, the pathways followed by cranial neural crest cells were lined with FN and LM. In the trunk region, FN and LM were observed surrounding a subpopulation of neural crest cells. However, neither molecule exhibited the selective distribution pattern necessary for a guiding role in trunk neural crest migration. The levels of CSAT, FN, and LM are dynamic in the embryo, perhaps reflecting that the balance of surface-substratum adhesions contributes to initiation, migration, and localization of some neural crest cell populations.  相似文献   

12.
Previous studies from this laboratory (M. Bronner-Fraser (1985). J. Cell Biol. 101, 610) have demonstrated that an antibody to a cell surface receptor complex caused alterations in avian neural crest cell migration. Here, these observations are extended to examine the distribution and persistency of injected antibody, the dose dependency of the effect, and the long-term influences of antibody injection. The CSAT antibody, which recognizes a cell surface receptor for fibronectin and laminin, was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. Injected antibody molecules did not cross the midline, but appeared to diffuse throughout the injected half of the mesencephalon, where they remained detectable by immunocytochemistry for about 22 hr. Embryos were examined either during neural crest migration (up to 24 hr after injection) or after formation of neural crest-derived structures (36-48 hr after injection). In those embryo fixed within the first 24 hr, the major defects were a reduction in the neural crest cell number on the injected side, a buildup of neural crest cells within the lumen of the neural tube, and ectopically localized neural crest cells. In embryos allowed to survive for 36 to 48 hr after injection, the neural crest derivatives appeared normal on both the injected and control side, suggesting that the embryos compensated for the reduction in neural crest cell number on the injected side. However, the embryos often had severely deformed neural tubes and ectopic aggregates of neural crest cells. In contrast, several control antibodies had no effect. These findings suggest that the CSAT receptor complex is important in the normal development of the neural crest and neural tube.  相似文献   

13.
Frizzled7 mediates canonical Wnt signaling in neural crest induction   总被引:1,自引:0,他引:1  
The neural crest is a multipotent cell population that migrates from the dorsal edge of the neural tube to various parts of the embryo where it differentiates into a remarkable variety of different cell types. Initial induction of neural crest is mediated by a combination of BMP, Wnt, FGF, Retinoic acid and Notch/Delta signaling. The two-signal model for neural crest induction suggests that BMP signaling induces the competence to become neural crest. The second signal involves Wnt acting through the canonical pathway and leads to expression of neural crest markers such as slug. Wnt signals from the neural plate, non-neural ectoderm and paraxial mesoderm have all been suggested to play a role in neural crest induction. We show that Xenopus frizzled7 (Xfz7) is expressed in the dorsal ectoderm including early neural crest progenitors and is a key mediator of the Wnt inductive signal. We demonstrate that Xfz7 expression is induced in response to a BMP antagonist, noggin, and that Xfz7 can induce neural crest specific genes in noggin-treated ectodermal explants (animal caps). Morpholino-mediated or dominant negative inhibition of Xfz7 inhibits Wnt induced Xslug expression in the animal cap assay and in the whole embryo leading to a loss of neural crest derived pigment cells. Full-length Xfz7 rescues the morpholino-induced phenotype, as does activated beta-catenin, suggesting that Xfz7 is signaling through the canonical pathway. We therefore demonstrate that Xfz7 is regulated by BMP antagonism and is required for neural crest induction by Wnt in the developing vertebrate embryo.  相似文献   

14.
15.
The neural crest of vertebrate embryos has been used to elucidate steps involved in early embryonic cellular processes such as differentiation and migration. Neural crest cells form a ridge along the dorsal midline and subsequently they migrate throughout the embryo and differentiate into a wide variety of cell types. Intrinsic factors and environmental cues distributed along the neural tube, along the migratory pathways, and/or at the location of arrest influence the fate of neural crest cells. Although premigratory cells of the cranial and trunk neural crest exhibit differences in their differentiation potentials, premigratory trunk neural crest cells are generally assumed to have equivalent developmental potentials. Axolotl neural crest cells from different regions of origin, different stages of development, and challenged with different culture media have been analyzed for differentiation preferences pertaining to the pigment cell lineages. We report region-dependent differentiation of chromatophores from trunk neural crest at two developmental stages. Also, dosage with guanosine produces region-specific influences on the production of xanthophores from wild-type embryos. Our results support the hypothesis that spatial and temporal differences among premigratory trunk neural crest cells found along the anteroposterior axis influence developmental potentials and diminish the equivalency of axolotl neural crest cells.  相似文献   

16.
Neural crest cells express different adhesion modes at each phase of their development starting with their separation from the neural tube, followed by migration along definite pathways throughout the embryo, and finally to settlement and differentiation in elected embryonic regions. In order to determine possible changes in the cytoskeleton organization and function during these processes, we have studied the in situ distribution of two major cytoskeleton-associated elements involved in the membrane anchorage of actin microfilaments, i.e. vinculin and talin, during the ontogeny of the neural crest and its derivatives in the avian embryo. Prior to emigration, neural crest cells exhibited both vinculin and talin at levels similar to the neighbouring neural epithelial cells, and this expression apparently did not change as cells became endowed with migratory properties. However, vinculin became selectively enhanced in neural crest cells as they further migrated towards their final destination. This increase in vinculin amount was particularly striking in vagal and truncal neural crest cells entering cellular environments, such as the sclerotome and the gut mesenchyme. Talin was also expressed by neural crest cells but, in contrast to vinculin, staining was not conspicuous compared to neighbouring mesenchymal cells. High levels of vinculin persisted throughout embryogenesis in almost all neural derivatives of the neural crest, including the autonomous and sensory ganglia and Schwann cells along the peripheral nerves. In contrast, the non-neural derivatives of the neural crest rapidly lost their prominent vinculin staining after migration. The pattern of talin in the progeny of the neural crest was complex and varied with the cell types: for example, some cranial sensory ganglia expressed high amounts of the molecule whereas autonomic ganglia were nearly devoid of it. Our results suggest that (i) vinculin and talin may follow independent regulatory patterns within the same cell population, (ii) the level of expression of vinculin and talin in neural crest cells may be consistent with the rapid, constant modulations of their adhesive properties, and (iii) the expression patterns of the two molecules may also be correlated with the genesis of the peripheral nervous system.  相似文献   

17.
Summary When grown in confrontation culture on a planar substratum, avian neural crest cells and somite cells display both homotypic and heterotypic contact inhibition of movement as judged by analysis of time-lapse video recordings of locomotory and contact behaviour, and by use of a nuclear overlap assay. It is therefore unlikely that migration of neural crest cells within the embryo, and within embryonic tissues, can be explained on the basis of a lack of contact inhibition. The results are discussed in the general context of cell invasiveness.  相似文献   

18.
The avian spinal cord is characterized by an absence of motor nerves and sensory nerves and ganglia at its caudalmost part. Since peripheral sensory neurons derive from neural crest cells, three basic mechanisms could account for this feature: (i) the caudalmost neural tube does not generate any neural crest cells; (ii) neural crest cells originating from the caudal part of the neural tube cannot give rise to dorsal root ganglia or (iii) the caudal environment is not permissive for the formation of dorsal root ganglia. To solve this problem, we have first studied the pattern of expression of ventral (HNF3beta) and dorsal (slug) marker genes in the caudal region of the neural tube; in a second approach, we have recorded the emergence of neural crest cells using the HNK1 monoclonal antibody; and finally, we have analyzed the developmental potentials of neural crest cells arising from the caudalmost part of the neural tube in avian embryo in in vitro culture and by means of heterotopic transplantations in vivo. We show here that neural crest cells arising from the neural tube located at the level of somites 47-53 can differentiate both in vitro and in vivo into melanocytes and Schwann cells but not into neurons. Furthermore, the neural tube located caudally to the last pair of somites (i.e. the 53rd pair) does not give rise to neural crest cells in any of the situations tested. The specific anatomical aspect of the avian spinal cord can thus be accounted for by limited developmental potentials of neural crest cells arising from the most caudal part of the neural tube.  相似文献   

19.
Neural crest cells migrate extensively and interact with numerous tissues and extracellular matrix components during their movement. Cell marking techniques have shown that neural crest cells in the trunk of the avian embryo migrate through the anterior, but not posterior, half of each sclerotome and avoid the region around the notochord. A possible mechanism to account for this migratory pattern is that neural crest cells may be inhibited from entering the posterior sclerotome and the perinotochordal space. Thus, interactions with other tissue may prescribe the pattern of neural crest cell migration in the trunk. In contrast, interactions between neural crest cells and the extracellular matrix may mediate the primary interactions controlling neural crest cells migration in the head region. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The neural crest is an embryonic cell population that originates at the border between the neural plate and the prospective epidermis. Around the time of neural tube closure, neural crest cells emigrate from the neural tube, migrate along defined paths in the embryo and differentiate into a wealth of derivatives. Most of the craniofacial skeleton, the peripheral nervous system, and the pigment cells of the body originate from neural crest cells. This cell type has important clinical relevance, since many of the most common craniofacial birth defects are a consequence of abnormal neural crest development. Whereas the migration and differentiation of the neural crest have been extensively studied, we are just beginning to understand how this tissue originates. The formation of the neural crest has been described as a classic example of embryonic induction, in which specific tissue interactions and the concerted action of signaling pathways converge to induce a multipotent population of neural crest precursor cells. In this review, we summarize the current status of knowledge on neural crest induction. We place particular emphasis on the signaling molecules and tissue interactions involved, and the relationship between neural crest induction, the formation of the neural plate and neural plate border, and the genes that are upregulated as a consequence of the inductive events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号