首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R Raag  S A Martinis  S G Sligar  T L Poulos 《Biochemistry》1991,30(48):11420-11429
The crystal structure of a cytochrome P-450CAM site-directed mutant in which the active site Thr252 has been replaced with an Ala (Thr252Ala) has been refined to an R factor of 0.18 at 2.2 A. According to sequence alignments (Nelson & Strobel, 1989), Thr252 is highly conserved among P-450 enzymes. The crystallographic structure of ferrous camphor- and carbon monoxide-bound P-450CAM (Raag & Poulos, 1989b) suggests that Thr252 is a key active site residue, forming part of the dioxygen-binding site. Mutation of the active site threonine to alanine produces an enzyme in which substrate hydroxylation is uncoupled from electron transfer. Specifically, hydrogen peroxide and "excess" water are produced instead of the product, 5-exo-hydroxycamphor. The X-ray structure has revealed that a local distortion in the distal helix between Gly248 and Thr252 becomes even more severe in the Thr252Ala mutant. Furthermore, a solvent molecule not present in the native enzyme is positioned in the dioxygen-binding region of the mutant enzyme active site. In this location, the solvent molecule could sterically interfere with and destabilize dioxygen binding. In addition, the active site solvent molecule is connected, via a network of hydrogen bonds, with an internal solvent channel which links distal helix residues to a buried Glu side chain. Thus, solvent protons appear to be much more accessible to dioxygen in the mutant than in the wild-type enzyme, a factor which may promote hydrogen peroxide and/or water production instead of substrate hydroxylation. On the basis of crystallographic and mutagenesis data, a proton delivery pathway involving residues Lys178/Arg186, Asp251, and Thr252 is proposed for wild-type P-450CAM. Coordinates of structures discussed in this paper have been submitted to the Brookhaven Protein Data Bank (Bernstein et al., 1977).  相似文献   

2.
3.
B K Fung  H K Yamane  I M Ota  S Clarke 《FEBS letters》1990,260(2):313-317
Treatment of purified cytochrome P-450 LM2 and its liposome-bound form with hydrogen peroxide led to complete destruction of the P-450 heme. The apoenzyme thus produced could be reconstituted to catalytically active cytochrome P-450 by incubation with hemin, the reconstitution efficiency being 50% for the soluble enzyme and 80% for the liposome-bound enzyme. The removal of heme from the soluble hemoprotein resulted in a 3-fold decrease in the efficiency of its incorporation into sonicated liposomes. The contents of 5 secondary structure forms in the native, apoand reconstituted holoenzymes were estimated from their circular dichroism spectra. It was thus found that the helix content increased from 34% to 60% upon removal of the heme from the native enzyme. We suggest that the increase in the helix content leads to a reduction of the incorporation efficiency into liposomal membranes.  相似文献   

4.
The oxidative metabolism of androgens in the rat brain includes aromatization preceded by the requisite 19-hydroxylation. We have examined the transformation of [19-C3H3]androstenedione and [4-14C]testosterone by the semipurified cytochrome P-450 fraction of the rat brain. [19-C3H3]Androstenedione generated tritiated water and formic acid in a ratio of 8 to 1 indicating that 19-hydroxylation in the brain far exceeds that necessary for aromatization. This was confirmed by the results of the 14C-testosterone incubation in which the 14C labeled 19-hydroxy and 19-oxo derivatives which were isolated exceeded the yield of 14C-estrogens by several fold. Thus the rat brain has the capacity to form in situ 19-hydroxylated androgens which are not available to it from the circulation.  相似文献   

5.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots.  相似文献   

6.
19-Norandrostenedione and androstenedione are shown to be metabolized by purified, reconstituted human placental aromatase cytochrome P-450. Kinetic evidence indicates that both steroids share a common catalytic site: 19-norandrostenedione is a competitive inhibitor of androstenedione aromatization, and the Ki value for its inhibition (120 nM) is similar to the Km value for its metabolism (132 nM). The two substrates differ, however, in their sensitivity to inhibition by the heme-iron ligand cyanide; 19-norandrostenedione is approximately 3-fold more sensitive to cyanide inhibition. Spectroscopic studies show that this differential inhibition by cyanide occurs because androstenedione competes with cyanide, whereas 19-norandrostenedione promotes cyanide binding to the heme-iron. It is proposed that these opposite effects on cyanide-iron coordination are due to the proximity of the heme-iron and C-19 of androstenedione in the enzyme-substrate complex, which results in steric exclusion of cyanide from the active site by the C-19 methyl group of androstenedione. Dioxygen is not excluded from binding to the heme-iron during catalysis, presumably because it bonds at an angle, in contrast to the linear bond of iron-cyanide complexes. A model for the active site of aromatase cytochrome P-450 is presented.  相似文献   

7.
Inhibition of human cytochrome P450 aromatase activity by butyltins   总被引:10,自引:0,他引:10  
Organotin compounds are widely used as antifouling agents and bioaccumulate in the food chain. Tributyltin chloride (TBT) has been shown to induce imposex in female gastropods. On the basis of this observation it has been suggested that TBT acts as an endocrine disrupter inhibiting the conversion of androgens to estrogens mediated by the aromatase cytochrome P450 enzyme. However, to date, the molecular basis of TBT-induced imposex and in particular its putative inhibitory effects on human aromatase cytochrome P450 activity have not been investigated. Therefore, we examined the effects of the organotin compounds tetrabutyltin (TTBT), TBT, dibutyltin dichloride (DBT) and monobutyltin trichloride (MBT) on human placental aromatase activity. TBT was found to be a partial competitive inhibitor of aromatase activity with an IC(50) value of 6.2 microM with 0.1 microM androstenedione as substrate. TBT impaired the affinity of the aromatase to androstenedione but did not affect electron transfer from NADPH to aromatase via inhibiting the NADPH reductase. DBT acted as a partial but less potent inhibitor of human aromatase activity (65% residual activity), whereas TTBT and MBT had no effect. The residual activity of TBT-saturated aromatase was 37%. In contrast, human 3beta-HSD type I activity was only moderately inhibited by TBT (80% residual activity). Moreover, neither TTBT or DBT nor MBT inhibited the 3beta-HSD type I activity. Together, these results suggest that the environmental pollutants TBT and DBT, both present in marine organisms, textile and plastic products, may have specific impacts on the metabolism of sex hormones in humans.  相似文献   

8.
Rates of N-demethylation of N,N-dimethylaniline and of eight meta- or para-substituted N,N-dimethylanilines by rat liver cytochrome P-450PB-B (P-450) were determined under conditions where oxidation was supported by iodosylbenzene or NADPH-P-450 reductase. The rates of dimethylaniline oxidation were found to correlate with the substrate oxidation-reduction potential within each series of substrates supported by a particular oxygen activation protocol; the kcat for each substrate studied was approximately 20-fold faster in the iodosylbenzene-supported system relative to the NADPH-P-450 reductase supported system. Since the N-demethylation of amines is believed to proceed via an initial electron-transfer step, a kinetic scheme for P-450 was proposed that enabled evaluation of the data according to theoretical treatments that correlate rates of electron transfer with extrakinetic parameters. In these analyses, the data could be fitted to the Rehm-Weller and Agmon-Levine equations, providing lambda values (for the energetics of enzyme-substrate reorganization) of 22-26 kcal mol-1 and apparent E1/2 (oxidation-reduction potentials) of 1.7-2.0 V (vs saturated calomel) for the oxidized enzyme. The apparent E1/2 for the enzyme is composed of contributions from the intrinsic potential of the active prosthetic core of the enzyme, the Fe = O - porphyrin species, and a coulombic factor that is a function of the charge-separated radical anion/radical cation pair produced upon electron transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

10.
Several naphthoquinones, except 2-hydroxy-1,4-naphthoquinone, were found to inhibit microsomal cytochrome P-450-linked monooxygenase activities in rabbit liver and human placenta. In particular, 5-hydroxy-1,4-naphthoquinone inhibited placental estrogen biosynthesis more effectively than it did hepatic drug oxidation reactions. There was little contribution by superoxide radicals to these enzyme inhibitions by naphthoquinones. Spectrophotometric studies revealed that naphthoquinones bind to the cytochrome P-450 component of the monooxygenase complex in both microsomal systems, suggesting that the inhibition is caused by direct interaction of these compounds with the heme.  相似文献   

11.
Cytochrome P-450scc and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of a cross-linked complex and 6% of free cytochrome P-450scc was obtained after purification on cholate-Sepharose. Cytochrome P-450scc in the cross-linked complex is not reduced in the presence of NADPH and adrenodoxin reductase, but completely preserves its high spin form in the presence of Tween-20 or pregnenolone. The use of radioactive labelled adrenodoxin, chemical cleavage of cytochrome P-450scc from the cross-linked complex by o-iodosobenzoic acid and HPLC for separation of peptides demonstrated that the cytochrome P-450scc complex with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450scc, i.e., Leu 88-Trp108 and Leu368-Trp417.  相似文献   

12.
Use of molecular probes to study regulation of aromatase cytochrome P-450.   总被引:4,自引:0,他引:4  
Aromatase, an enzyme complex localized in the endoplasmic reticulum of estrogen-producing cells, is composed of NADPH-cytochrome P-450 reductase, and aromatase cytochrome P-450 (cytochrome P-450AROM). To define the molecular mechanisms involved in the multifactorial regulation of cytochrome P-450AROM in estrogen-producing cells, we have isolated a cDNA specific for human cytochrome P-450AROM and have used this cDNA to isolate the human cytochrome P-450AROM gene. The cDNA sequence encodes a polypeptide of 503 amino acids and contains--near the carboxy-terminus, a region of high homology with the putative heme-binding regions of other P-450 cytochromes. COS1 cells transfected with an expression plasmid containing the cytochrome P-450AROM cDNA had the capacity to aromatize testosterone, androstenedione and 16 alpha-hydroxyandrostenedione, suggesting that a single polypeptide catalyzes all steps of the aromatization reaction using either of the three major C19-substrates. The human cytochrome P-450AROM gene is greater than 52 kb in size and consists of 10 exons and 9 introns. Hormonally induced changes in aromatase activity of human ovarian granulosa and adipose stromal cells are associated with comparable changes in cytochrome P-450AROM gene expression and synthesis, whereas the reductase component is only modestly affected. Studies are in progress to define the molecular mechanisms involved in the regulation of cytochrome P-450AROM gene expression in estrogen-producing cells.  相似文献   

13.
We have previously shown that uroporphyrinogen is oxidized to uroporphyrin by microsomes (microsomal fractions) from 3-methylcholanthrene-pretreated chick embryo liver [Sinclair, Lambrecht & Sinclair (1987) Biochem. Biophys. Res. Commun. 146, 1324-1329]. We report here that a specific antibody to chick liver methylcholanthrene-induced cytochrome P-450 (P-450) inhibited both uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in chick-embryo liver microsomes. 3-Methylcholanthrene-pretreatment of rats and mice markedly increased uroporphyrinogen oxidation in hepatic microsomes as well as P-450-mediated ethoxyresorufin de-ethylation. In rodent microsomes, uroporphyrinogen oxidation required the addition of NADPH, whereas chick liver microsomes required both NADPH and 3,3',4,4'-tetrachlorobiphenyl. Treatment of rats with methylcholanthrene, hexachlorobenzene and o-aminoazotoluene increased uroporphyrinogen oxidation and P-450d, whereas phenobarbital did not increase either. The contribution of hepatic P-450c and P-450d to uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in methylcholanthrene-induced microsomes was assessed by using specific antibodies to P-450c and P-450d. Uroporphyrinogen oxidation by methylcholanthrene-induced rat liver microsomes was inhibited up to 75% by specific antibodies to P-450d, but not by specific antibodies to P-450c. In contrast, ethoxyresorufin de-ethylation was inhibited only 20% by anti-P450d but 70% by anti-P450c. Methylcholanthrene-induced kidney microsomes which contain P-450c but non P-450d did not oxidize uroporphyrinogen. These data indicate that hepatic P-450d catalyses uroporphyrinogen oxidation. We suggest that the P-450d-catalysed oxidation of uroporphyrinogen has a role in the uroporphyria caused by hexachlorobenzene and other compounds.  相似文献   

14.
The intramolecular site of P-450scc for conversion of cholesterol to pregnenolone involves a substrate site, an active site, and a site for transmission of electrons. The substrate site was studied with a high-affinity, high-potency nitroxide spin-labeled inhibitor of cholesterol side-chain cleavage. This substance, 17 alpha-hydroxy-11-deoxycorticosterone nitroxide (SL-V), has an affinity comparable to that of the most active substrate inhibitors ever reported and 2-50 times greater than that of the natural substrate cholesterol. Competition experiments with cholesterol and its analogues confirmed that SL-V binds reversibly to the substrate site. Titration experiments showed a single binding site on the P-450 molecule. The substrate site is on the apoprotein and has little or no direct interaction with the heme. Spin-spin interactions between the Fe3+ and side-chain or A-ring spin-labeled groups could not be demonstrated, which is consistent with carbons 22 and 20 being closest to the heme iron. We postulate that substrate disrupts a histidine nitrogen coordination with the heme iron and induces conformational changes in the apoprotein. These changes lead to increased affinity for iron-sulfur protein.  相似文献   

15.
Aromatase cDNA clones were isolated from cDNA libraries of mouse hypothalamus, amygdala and ovary. Analysis of the nucleotide sequences of the 5′ regions of the obtained cDNAs suggested that the mouse aromatase gene is tissue-specifically regulated by alternative exons 1. There were obvious differences between the 5′ regions of the brain and ovary aromatase cDNAs, but no difference was found between the sequences of the hypothalamus and amygdala ones. We further isolated a mouse genomic DNA clone containing brain- and ovary-specific exons 1. The brain specific exons 1 and their promoters were highly homologous in the human and mouse aromatase genes. In contrast there were several differences in the sequences among the promoter regions of the ovary-specific exons 1 of the mouse, human and rat aromatase genes, significant homology between their sequences was also observed. The present results demonstrate that expression of the mouse aromatase gene is also tissue-specifically regulated through the use of alternative exons 1 and promoters, as reported for man.  相似文献   

16.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ferric, ferrous and ferrous-CO hemoprotein H-450 from rat liver have been examined with magnetic circular dichroism spectroscopy under alkaline (pH 8.0) and acidic (pH 6.0) conditions. The spectral properties of these species require that one of the axial heme iron ligands in the alkaline ferric and ferrous states must be a thiolate sulfur, presumably from cysteine. The data are most consistent with the ligand trans to thiolate being either histidine or methionine. The reversible pH effects on the spectral properties of the ferrous protein, but not of the ferric protein, appear to involve protonation or displacement of the thiolate. As treatment of the ferrous protein with CO does not yield a thiolate-ligated ferrous-CO adduct, CO either displaces the thiolate or its addition is accompanied by protonation of the thiolate.  相似文献   

18.
19.
Active site model of cytochrome P-450 LM2   总被引:1,自引:0,他引:1  
Based on (i) a detailed analysis of the physicochemical properties of selected benzphetamine derived substrates and (ii) the identification of Tyr-380 as active site residue trans to thiolate theoretical studies (computer aided molecular design) revealed a model of the substrate binding site of cytochrome P-450 LM2. The results indicate that substrates with a butterfly-like bulky conformation exhibit the highest intrinsic activity. Those substrates which preferably exist in an extended conformation are sterically hindered to intensively interact with the binding site which is demonstrated by computer graphics.  相似文献   

20.
To solve the problem of localization of the active center of cytochrome P-450 in microsomal membranes, new bifunctional compounds (I-IV), which contain pyridine radical, aliphatic chain of variable length and diphosphonic acid ("floating" molecules) have been applied. These compounds inhibit oxidation and binding of the substrates of cytochrome P-450 (aminopyrine and aniline), inhibition being of a competitive character. Measurements of distribution coefficients between water and membranes of microsomes and liposomes from egg phosphatidylcholine evidence that the microsomal proteins are necessary for providing effective interaction of I-IV with microsomal membrane. The 1H-NMR method has demonstrated compounds to be incorporated into lipid bilayer so that the non-polar part is in the inner membrane volume. The results obtained confirm our previous conclusion (Krainev A.G., Weiner L.M., Alferyev I.S., Slynko N.M. (1985) Biochim. Biophys. Acta, 818, 96-104) about localization of the active center of microsomal cytochrome P-450 at the depth of approximately 18 A from the hydrophilic surface of a membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号