首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cellular signaling proteins such as metabotropic glutamate receptors, Shank, and different types of ion channels are physically linked by Vesl (VASP/Ena-related gene up-regulated during seizure and LTP)/Homer proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851]. Vesl/Homer proteins have also been implicated in differentiation and physiological adaptation processes [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348]. Here we provide evidence that a Vesl/Homer subtype, Vesl-1L/Homer-1c (V-1L), reduces the function of the intracellular calcium channel ryanodine receptor type 2 (RyR2). In contrast, Vesl-1S/Homer-1a (V-1S) had no effect on RyR2 function but reversed the effects of V-1L. In live cells, in calcium release studies and in single-channel electrophysiological recordings of RyR2, V-1L reduced RyR2 activity. Important physiological functions and pharmacological properties of RyR2 are preserved in the presence of V-1L. Our findings demonstrate that a protein-protein interaction between V-1L and RyR2 is not only necessary for organizing the structure of intracellular calcium signaling proteins [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23(2000)80; J. Cell Sci. 113 (2000) 1851; Nat Neurosci. 4 (2001) 499; Nature 411 (2001) 962; Biochem. Biophys. Res. Commun. 279 (2000) 348; Nature 386 (1997) 284], but that V-1L also directly regulates RyR2 channel activity by changing its biophysical properties. Thereby it may control cellular calcium homeostasis. These observations suggest a novel mechanism for the regulation of RyR2 and calcium-dependent cellular functions.  相似文献   

2.
Cellular activities controlled by signal transduction processes such as cell motility and cell growth depend on the tightly regulated assembly of multiprotein complexes. Adapter proteins that specifically interact with their target proteins are key components required for the formation of these assemblies. Ena/VASP-homology 1 (EVH1) domains are small constituents of large modular proteins involved in microfilament assembly that specifically recognize proline-rich regions. EVH1 domain-containing proteins are present in neuronal cells, like the Homer/Vesl protein family that is involved in memory-generating processes. Here, we describe the crystal structure of the murine EVH1 domain of Vesl 2 at 2.2 A resolution. The small globular protein consists of a seven-stranded antiparallel beta-barrel with a C-terminal alpha-helix packing alongside the barrel. A shallow groove running parallel with beta-strand VI forms an extended peptide-binding site. Using peptide library screenings, we present data that demonstrate the high affinity of the Vesl 2 EVH1 domain towards peptide sequences containing a proline-rich core sequence (PPSPF) that requires additional charged amino acid residues on either side for specific binding. Our functional data, substantiated by structural data, demonstrate that the ligand-binding of the Vesl EVH1 domain differs from the interaction characteristics of the previously examined EVH1 domains of the Evl/Mena proteins. Analogous to the Src homology 3 (SH3) domains that bind their cognate ligands in two distinct directions, we therefore propose the existence of two distinct classes of EVH1 domains.  相似文献   

3.
Vesl/Homer proteins physically link proteins that mediate cellular signaling [Curr. Opin. Neurobiol. 10 (2000) 370; Trends Neurosci. 23 (2000) 80; J. Cell Sci. 113 (2000) 1851] and thereby influence cellular function [Nat. Neurosci. 4 (2001) 499; Nature 411 (2001) 962]. A previous study reported that Vesl-1L/Homer-1c (V-1L) controls the gain of the intracellular calcium activated calcium channel ryanodine receptor type 1 (RyR1) channel [J. Biol Chem. 277 (2002) 44722]. Here, we show that the function of RyR1 is differentially regulated by two isoforms of Vesl-1/Homer-1, V-1L and Vesl-1S/Homer-1a (V-1S). V-1L increases the activity of RyR1 while important regulatory functions and pharmacological characteristics are preserved. V-1S alone had no effect on RyR1, even though, like V-1L, it is directly bound to the channel. However, V-1S dose-dependently decreased the effects of V-1L on RyR1, providing a novel mechanism for the regulation of intracellular calcium channel activity and calcium homeostasis by changing expression levels of Vesl/Homer proteins.  相似文献   

4.
The number of neurotransmitter receptors in the postsynaptic membrane and their functional coupling to intracellular signalling cascades are important determinants of synaptic strength--and hence potential targets for plasticity related modulation. In this context, Homer/Vesl proteins have gained particular interest for three main reasons: (i) they constitute part of the molecular scaffold at postsynaptic densities of excitatory synapses in the mammalian brain; (ii) they physically link type-I metabotropic glutamate receptors to the postsynaptic density and to inositol 1,4,5-triphosphate receptors in the subsynaptic endoplasmic reticulum; and (iii) Homer-1a, which has been categorized as an immediate early gene isoform, exerts dominant-negative activity, suggesting that it is involved in activity dependent rearrangements at synaptic junctions. Although these fundamental aspects have been reviewed previously by Xiao et al., this review will address primarily more recent studies on the regulation of Homer 1a expression and on the role of Homer/Vesl proteins in spine morphogenesis and receptor targeting and signalling.  相似文献   

5.
Since their initial discovery in 1997, Homer/Vesl proteins have become increasingly investigated as putative regulators of receptor and ion-channel function in the central nervous system. Within a relatively brief period, numerous research reports have described manifold effects of Homer proteins, including the modulation of the trafficking of type I metabotropic glutamate receptors (mGluRs), axonal pathfinding, mGluR coupling to calcium and potassium channels, agonist-independent mGluR activity, ryanodine receptor regulation, locomotor activity, and behavioral plasticity. This review summarizes our current knowledge on the induction, expression, and structure of the various forms of Homer proteins, as well as their roles in neuronal function. In addition, we provide an outlook on novel developments with regard to the involvement of Homer-1a in hippocampal synaptic function.  相似文献   

6.
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca2 + homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

7.
Homers are adapter proteins that play a significant role in the organization of calcium signaling protein complexes. Previous functional studies linked Homer proteins to calcium influx in nonexcitable cells. These studies utilized calcium imaging or whole-cell current recordings. Because of limited resolution of these methods, an identity of Homer-modulated ion channels remained unclear. There are several types of plasma membrane calcium influx channels in A431 cells. In the present study, we demonstrated that Homer dissociation resulted in specific activation of I(min) channels but not of I(max) channels in inside-out patches taken from A431 cells. In contrast, inositol 1,4,5-trisphosphate activated both I(min) and I(max) channels in inside-out patches. Short (1a) and long (1c) forms of Homer had different effects on I(min) channel activity. Homer 1a but not Homer 1c activated I(min) in the patches. This study indicates that I(min) channels are specifically regulated by Homer proteins in A431 cells.  相似文献   

8.
Homer proteins are commonly known as scaffold proteins at postsynaptic density. Homer 1 is a widely studied member of the Homer protein family, comprising both synaptic structure and mediating postsynaptic signaling transduction. Both an immediate-early gene encoding a Homer 1 variant and a constitutively expressed Homer 1 variant regulate receptor clustering and trafficking, intracellular calcium homeostasis, and intracellular molecule complex formation. Substantial preclinical investigations have implicated that each of these Homer 1 variants are associated with the etiology of many neurological diseases, such as pain, mental retardation syndromes, Alzheimer's disease, schizophrenia, drug-induced addiction, and traumatic brain injury.  相似文献   

9.
Neurons expand, sustain or prune their dendritic trees during ontogenesis [Cline, H.T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118-126; Wong, W.T. and Wong, R.O.L. (2000) Rapid dendritic movements during synapse formation and rearrangement. Curr. Opin. Neurobiol. 10, 118-124] which critically depends on neuronal activity [Wong, W.T., Faulkner-Jones, B.E., Sanes, J.R. and Wong, R.O.L. (2000) Rapid dendritic remodeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci. 20, 5024-5036; Li, Z., Van Aelst, L. and Cline, H.T. (2000) Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat. Neurosci. 3, 217-225; Wong, W.T. and Wong, R.O.L. (2001) Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat. Neurosci. 4, 351-352.] and sub-cellular Ca(2+) signals [Lohmann, C., Myhr, K.L. and Wong, R.O. (2002) Transmitter-evoked local calcium release stabilizes developing dendrites, Nature 418, 177-181.]. The role of synaptic clustering proteins connecting both processes is unclear. Here, we show that expression levels of Vesl-1/Homer 1 isoforms critically control properties of Ca(2+) release from intracellular stores and dendritic morphology of CNS neurons. Vesl-1L/Homer 1c, an isoform with a functional WH1 and coiled-coil domain, but not isoforms missing these features were capable of potentiating intracellular calcium signaling activity indicating that such regulatory interactions function as a general paradigm in cellular differentiation and are subject to changes in expression levels of Vesl/Homer isoforms.  相似文献   

10.
Vesl-1S/Homer 1a, reported originally as Vesl/Homer, was isolated as a synaptic plasticity-regulated gene. The expression of Vesl-1S/Homer 1a is regulated during long-term potentiation in the hippocampus. Vesl-1L/Homer 1c, which appears to be formed by a splicing event, shares the N-terminus with Vesl-1S/Homer 1a and also contains additional amino acids at the C-terminus. The short form and the long form of the family members both interact with group 1 metabotropic glutamate receptors (mGluRs). We herein report the identification of syntaxin 13 as a molecule that interacts with Vesl-1L using yeast two-hybrid screening. Syntaxin 13 is a member of the syntaxin family and is regarded as soluble N-ethylmaleimide-sensitive attachment proteins receptors (SNAREs) in the endosomal membranes. The interaction of Vesl-1L and syntaxin 13 was biochemically confirmed by in vitro binding assays. The coexpression of the two proteins in the transfected cells resulted in a colocalization in the intracellular vesicle-like structures. We thus propose that the association of Vesl-1L with syntaxin 13 plays a role in the translocation of Vesl-1L to the intracellular organelles.  相似文献   

11.
The Homer family of scaffold proteins couples NMDA receptors to metabotropic glutamate receptors and links extracellular signals to calcium release from intracellular stores. Ania-3 is a member of the Homer family and is rapidly inducible in brain in response to diverse stimuli. Here, we report the identification of the plasma membrane Ca2+ ATPase (PMCA) as a novel Ania-3/Homer-associated protein. Ania-3/Homer interacts with the b-splice forms of all PMCAs (PMCA1b, 2b, 3b, and 4b) via their PDZ domain-binding COOH-terminal tail. Ectopically expressed Ania-3 colocalized with the PMCA at the plasma membrane of polarized MDCK epithelial cells, and endogenous Ania-3/Homer and PMCA2 are co-expressed in the soma and dendrites of primary rat hippocampal neurons. The interaction between Ania-3/Homer and PMCAs may represent a novel mechanism by which local calcium signaling and hence synaptic function can be modulated in neurons.  相似文献   

12.
Adaptor proteins play a pivotal role in the regulation of signal transduction events elicited after the engagement of cell surface receptors. Platelets exhibit a number of integral membrane receptors capable of initiating a cellular response. These include collagen receptors, von Willebrand factor receptors, the fibrinogen receptor, and a number of G-protein coupled receptors, such as those for thrombin and ADP. The primary function of platelet receptors is the translation of externally applied signals into appropriate responses leading to platelet activation being a prerequisite for normal hemostasis. Multitude of signalling pathways described in platelets is based on the interaction of compounds of many different categories, such as transmembrane receptors, protein kinases, protein phoshatases, G-proteins, transmembrane and cytosolic adaptor proteins, phosphoinositides, cyclic AMP or GMP. Adaptor proteins lack intrinsic effector function, but contain distinct molecular domains, which mediate protein-protein and protein-lipid interactions. These molecules thus serve as a scaffolding, around which effectors and their substrates are assembled into three-dimensional signaling complexes. Adaptor proteins integrate receptor-mediated signals at intracellular levels and couple signaling receptors to cytosolic signaling pathways. While the function of adaptor proteins is well established in immune cells, the knowledge about their role in platelet activation is still at the onset Over the last decade numerous adaptor proteins have been identified in platelets and shown to be involved in accurate assembly of intracellular signaling complexes. Collagen-induced platelet intracellular signaling through GPVI resembles the functional response of B- and T-cell antigen receptors and is the best described in the literature. This review focuses on the structure and functional role of the most extensively studied adaptor proteins during platelet activation induced by physiological agonists.  相似文献   

13.
Protein modules as organizers of membrane structure.   总被引:15,自引:0,他引:15  
Investigations conducted over the past 18 months have shed new light on how modular protein-binding domains, in particular PDZ domains, co-ordinate the assembly of functional plasma membrane domains. Members of the MAGUK (membrane-associated guanylate kinase) protein family, like PSD-95, use multiple domains to cluster ion channels, receptors, adhesion molecules and cytosolic signaling proteins at synapses, cellular junctions, and polarized membrane domains. Other PDZ proteins, like the Drosophila protein INAD and the epithelial Na(+)/H(+) regulatory factor (NHERF), organize cellular signaling by localizing transmembrane and cytosolic components to specific membrane domains and assembling these components into functional complexes. The organization of these proteins into discreet structures has functional consequences for downstream signaling.  相似文献   

14.
The postsynaptic density (PSD) is a dynamic multi-protein complex attached to the postsynaptic membrane composed of several hundred proteins such as receptors and channels, scaffolding and adaptor proteins, cell-adhesion proteins, cytoskeletal proteins, G-proteins and their modulators and signaling molecules including kinases and phosphtases. This review focuses on the prominent PSD scaffolds proteins such as members of the MAGUK (membrane-associated guanylyl kinase), Shank (SH3 domain and ankyrin repeat-containing protein) and Homer families. These molecules interact simultaneously with different kinds of receptors and modulate their function by linking the receptors to downstream signaling events. For example PSD 95, a main member of MAGUK family, interacts directly with carboxyl termini of NMDA receptor subunits and clusters them to the postsynaptic membrane. In addition, PSD 95 is involved in binding and organizing proteins connected with NMDAR signaling. Based on the modular character and ability to form multiproteins interactions, MAGUK, Shank and Homer are perfectly suited to act as a major scaffold in postsynaptic density.  相似文献   

15.
A family of anchoring proteins named MAGUK (for membrane associated guanylate kinase) has emerged as a key element in the organization of protein complexes in specialized membrane regions. These proteins are characterized by the presence of multipe protein-protein interaction domains including PDZ and SH3 domains. The MAGUK family comprises the post-synaptic density 95 (PSD-95) protein and closely related molecules such as chapsyn-110, synapse-associated protein 102 (SAP-102), and SAP-97. These are located either on the pre- and/or post-synaptic sides of synapses or at cell-cell adhesion sites of epithelial cells. MAGUK proteins interact with glutamate receptors and various ionic channels. For instance, an interaction has been reported between the first two PDZ domains of MAGUK proteins and several channels via a consensus sequence Thr/Ser-X-Val/Leu usually located at their carboxy terminus. The role of these anchoring proteins in channel function is not fully understood. MAGUK proteins enhance the current density by increasing the number of functional channels to the sarcolemma. They can also facilitate signaling between channels and several enzymes or G protein-dependent signaling pathways. In the heart also, MAGUK proteins are abundantly expressed and they interact with various channels including Shaker Kv1.5 and connexins.  相似文献   

16.
Homers are scaffolding proteins that bind Ca(2+) signaling proteins in cellular microdomains. The Homers participate in targeting and localization of Ca(2+) signaling proteins in signaling complexes. However, recent work showed that the Homers are not passive scaffolding proteins, but rather they regulate the activity of several proteins within the Ca(2+) signaling complex in an isoform-specific manner. Homer2 increases the GAP activity of RGS proteins and PLCbeta that accelerate the GTPase activity of Galpha subunits. Homer1 gates the activity of TRPC channels, controls the rates of their translocation and retrieval from the plasma membrane and mediates the conformational coupling between TRPC channels and IP(3)Rs. Homer1 stimulates the activity of the cardiac and neuronal L-type Ca(2+) channels Ca(v)1.2 and Ca(v)1.3. Homer1 also mediates the communication between the cardiac and smooth muscle ryanodine receptor RyR2 and Ca(v)1.2 to regulate E-C coupling. In many cases the Homers function as a buffer to reduce the intensity of Ca(2+) signaling and create a negative bias that can be reversed by the immediate early gene form of Homer1. Hence, the Homers should be viewed as the buffers of Ca(2+) signaling that ensure a high spatial and temporal fidelity of the Ca(2+) signaling and activation of downstream effects.  相似文献   

17.
Mammalian Toll-like receptor (TLR) proteins are new members of the IL-1 receptor family that participate in activation of cells by bacteria and bacterial products. Several recent reports indicate that TLR proteins mediate cellular activation by bacterial LPS via a signaling pathway that is largely shared by the type I IL-1 receptor. We previously showed that Chinese hamster ovary (CHO) fibroblasts engineered to express CD14 (CHO/CD14) were responsive to LPS, but not to a distinct CD14 ligand, mycobacterial lipoarabinomannan (LAM). These CHO/CD14 cells were subsequently found to possess a frame-shift mutation within the TLR2 gene which resulted in their inability to express functional TLR2 protein. Thus, we hypothesized that TLR2, but not TLR4, was necessary for LAM signaling. In this paper we show that CHO/CD14 cells engineered to express functional TLR2 protein acquired the ability to be activated by LAM. Similarly, overexpression of TLR2 in murine macrophages conferred enhanced LAM responsiveness. Together, our data demonstrate that the distinct CD14 ligands LAM and LPS utilize different TLR proteins to initiate intracellular signals. These findings suggest a novel receptor signaling paradigm in which the binding of distinct ligands is mediated by a common receptor chain, but cellular activation is initiated via distinct signal-transducing chains that confer ligand specificity. This paradigm contrasts with many cytokine receptor complexes in which receptor specificity is conferred by a unique ligand-binding chain but cellular activation is initiated via shared signal-transducing chains.  相似文献   

18.
Shank is a recently described family of postsynaptic proteins that function as part of the NMDA receptor-associated PSD-95 complex (Naisbitt et al., 1999 [this issue of Neuron]). Here, we report that Shank proteins also bind to Homer. Homer proteins form multivalent complexes that bind proline-rich motifs in group 1 metabotropic glutamate receptors and inositol trisphosphate receptors, thereby coupling these receptors in a signaling complex. A single Homer-binding site is identified in Shank, and Shank and Homer coimmunoprecipitate from brain and colocalize at postsynaptic densities. Moreover, Shank clusters mGluR5 in heterologous cells in the presence of Homer and mediates the coclustering of Homer with PSD-95/GKAP. Thus, Shank may cross-link Homer and PSD-95 complexes in the PSD and play a role in the signaling mechanisms of both mGluRs and NMDA receptors.  相似文献   

19.
Voltage gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead forms signaling complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily.  相似文献   

20.
Eukaryotes depend upon the proper localization, accumulation, and release of intracellular Ca2+. This is regulated through specialized cellular compartments, signaling pathways, and Ca2+-binding proteins and channels. Cytosolic and extracellular signaling governing intracellular Ca2+ stores are well explored. However, regulatory signals within Ca2+ storage organelles like the endoplasmic/sarcoplasmic reticulum are not well understood. This is due to a lack of identified signaling molecules - like protein kinases - within these compartments, limited information on their regulation, and incomplete understanding of mechanisms involving modified substrates. Here we review recent advances in intralumenal signaling focusing on the secretory pathway protein kinase FAM20C and its regulation, Ca2+-binding protein substrates, and potential mechanisms through which FAM20C may regulate Ca2+ storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号