首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical penetration graphs (EPGs) were used to investigate aphid stylet activities during brief penetrations and the importance of these events for the nonpersistent transmission of two potyviruses, beet mosaic virus (BMV) and potato virus Y (PVY). Stylet puncture of a cell membrane, recorded as a potential drop, was correlated with the acquisition and inoculation of PVY and acquisition of BMV by Myzus persicae.  相似文献   

2.
The effect of pre-acquisition starvation on stylet penetration behaviour by the aphidMyzus persicae (Sulz.) and the consequent non-persistent transmission of the potyviruses beet mosaic virus (BMV) and potato virus Y (PVY) were investigated. Visual observations indicated that starved aphids initiated penetrations earlier and penetrated for shorter periods than non-starved insects. Tethering with a fine gold wire did not affect these observations with either starved or non-starved aphids, but starvation caused increased PVY and BMV acquisition efficiency, regardless of tethering. Tethered aphids were then made part of an electrical circuit and their stylet activities investigated in detail. Electrically recorded aphids also acquired and inoculated both potyviruses more efficiently when starved, and these acquisitions and inoculations were associated with stylet punctures of plant cell membranes. However, starvation did not affect the occurrence of electrically recorded membrane puncture, suggesting that non-behavioural factors may contribute to the enhancement of virus transmission by pre-acquisition starvation.  相似文献   

3.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

4.
Incidence of Viruses Infecting Cucurbits in Cyprus   总被引:1,自引:0,他引:1  
  相似文献   

5.
Biological, serological and coat protein properties of a potyvirus (Poty-Rape) causing a mosaic disease of Brassica campestris and B. juncea in India were investigated. The virus readily infected 4 of the 5 plant species in the family Brassicaceae in which it induced severe systemic mosaic symptoms; it also induced chlorotic and necrotic local lesions in Chenopodium amaranticolor , but failed to infect 4 other species of Chenopodiaceae or 20 species of Amaranthaceae, Apiaceae, Canabinaceae, Compositae, Cucurbitaceae, Euphorbiaceae, Leguminosae and Solanaceae. The virus was transmitted in a non-persistant manner by Myzus persicae, Brevicoryne brassicae and Aphis gossypii. The Average size, of the virus particles in a purified preparation was 740 nm × 12 nm. SDS-PAGE analysis of the viral coat protein showed two major bands of approximately 37 kDa and 31 kDa, a pattern very similar to that of a reference isolate of turnip mosaic virus (TuMV) from the U.S. In Western-blot immunoassay, an antiserum to TuMV reacted with both the coat protein bands of the Poty-Rape islate and the reference TuMV, but not with the coat proteins of four other potyviruses. The high performance liquid chromatographic profile of tryptic peptides from the coat protein of Poty-Rape was found to be very similar to that of the reference TuMV, but differed substantially from those of four other potyviruses. The Poty-Rape isolate is considered to be a distinct strain of, TuMV.  相似文献   

6.
Viral diseases that could cause important economic losses often affect cucurbits, but only limited information on the incidence and spatial distribution of specific viruses is currently available. During the 2005 and 2006 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo), squash and pumpkin (Cucurbita pepo), watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) crops of the Spanish Community of Valencia (eastern Spain), where several counties have a long standing tradition of cucurbit cultivation and production. Surveyed fields were chosen with no previous information as to their sanitation status, and samples were taken from plants that showed virus‐like symptoms. Samples were analysed using molecular hybridisation to detect Beet pseudo‐yellows virus (BPYV), Cucurbit aphid‐borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ring spot virus (PRSV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). We collected 1767 samples from 122 independent field plots; out of these, approximately 94% of the samples were infected by at least one of these viruses. Percentages for the more frequently detected viruses were 35.8%, 27.0%, 16.5% and 7.2% for CABYV, WMV, PRSV and ZYMV, respectively, and significant deviations were found on the frequency distributions based on either the area or the host sampled. The number of multiple infections was high (average 36%), particularly for squash (more than 57%), with the most frequent combination being WMV + PRSV (12%) followed by WMV + CABYV (10%). Sequencing of WMV complementary DNA suggested that ‘emerging’ isolates have replaced the ‘classic’ ones, as described in southern regions of France, leading us to believe that cucurbit cultivation could be severely affected by these new, emerging isolates.  相似文献   

7.
棉蚜获毒后禁食对其保持并传播黄瓜花叶病毒的影响   总被引:5,自引:0,他引:5  
采用棉蚜Aphis gossypii 甜瓜Cumumis melo 黄瓜花叶病毒(cucumber mosaic virus, CMV)体系,研究棉蚜获毒后在空气中禁食对其保持并传播黄瓜花叶病毒的影响。结果表明获毒后的禁食时间与棉蚜传毒效率呈负相关。运用EPG (electrical penetration graph)及其即时显示、即时中断技术研究分析棉蚜禁食后的早期传毒行为细节。结果显示:禁食处理没有显著影响电势落差(potential drop,pd)数目及穿刺过程中出现的第一个pd波形前穿刺时间这两个重要指标,但禁食处理能引起pd波的两个亚波形pdⅡ-1和pdⅡ-2持续时间的显著减短。进一步分析未禁食棉蚜传毒作用与pd亚波形的关系,显示传毒可能与pdⅡ-2的持续时间相关(P=0.06)。因此,pdⅡ-2的持续时间可能是与棉蚜传毒相关的一个行为指标。该研究还建立了新的高效而稳定的获毒方法---5pd获毒法,与传统的5min获毒法相比,获毒效率显著提高。  相似文献   

8.
Begomoviruses and criniviruses, vectored by whiteflies (Bemisia tabaci), are important threats to crops worldwide. In recent years, the spread of cucurbit leaf crumple virus (CuLCrV), cucurbit yellow stunting disorder virus (CYSDV) and cucurbit chlorotic yellows virus (CCYV) on cucurbit crops has been reported to cause devastating crop losses in many regions of the world. In this study, a multiplex recombinase polymerase amplification (RPA) assay, an isothermal technique for rapid and simultaneous detection of DNA and RNA viruses CuLCrV, CYSDV and CCYV was developed. Highly specific and sensitive multiplex RPA primers for the coat protein region of these viruses were created and evaluated. The sensitivity of the multiplex RPA assay was examined using serially diluted plasmid containing the target regions. The results demonstrated that multiplex RPA primers have high sensitivity with a detection limit of a single copy of the viruses. The multiplex RPA primers were specific to the target as indicated by testing against other begomoviruses, potyviruses and an ilarvirus, and no nonspecific amplifications were noted. The primers simultaneously detected mixed infection of CCYV, CYSDV and CuLCrV in watermelon and squash crude extracts. This study is the first report of a multiplex RPA assay for simultaneous detection of mixed infection of DNA and RNA plant viruses.  相似文献   

9.
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.  相似文献   

10.
The minimum acquisition period of velvet tobacco mottle virus (VTMoV) by its mirid vector Cyrtopeltis nicotianae was about 1 min, with an increase in the rate of transmission (i.e. proportion of test plants infected) for acquisition periods up to 1000 min. Pre-acquisition starvation periods up to 18 h did not affect the rate of transmission. After an acquisition access period of 2 days, the minimum inoculation period was between 1 and 2 h and the rate of transmission increased with increasing inoculation time; when the acquisition access period was 1 h, or if vectors were fasted for 16 h after the 2 day acquisition, the rate of transmission was significantly lower. When mirids were transferred sequentially each day to a healthy plant after a 24 h acquisition feed, they transmitted intermittently for up to 10 days. Up to 50% of mirids transmitted after a moult and this was not due to the mirids probing the shed cuticles or exudates of infective insects. Mirids transmitted after a moult, following acquisition periods of 10, 100 or 1000 min. C. nicotianae transmitted solanum nodiflorum mottle virus (SNMV), sowbane mosaic virus (SoMV) and southern bean mosaic virus (SBMV), but not subterranean clover mottle virus (SCMoV), lucerne transient streak virus (LTSV), tobacco ringspot virus (TRSV), galinsoga mosaic virus (GMV), nor nicotiana velutina mosaic virus (NVMV). Tomato bushy stunt virus (TBSV) was transmitted to 1/58 test plants.  相似文献   

11.
12.
Genetic bottlenecks may occur in virus populations when only a few individuals are transferred horizontally from one host to another, or when a viral population moves systemically from the infection site. Genetic bottlenecks during the systemic movement of an RNA plant virus population were reported previously (H. Li and M. J. Roossinck, J. Virol. 78:10582-10587, 2004). In this study we mechanically inoculated an artificial population consisting of 12 restriction enzyme marker mutants of Cucumber mosaic virus (CMV) onto young leaves of squash plants and used two aphid species, Aphis gossypii and Myzus persicae, to transmit the virus populations from infected source plants to healthy squash plants. Horizontal transmission by aphids constituted a significant bottleneck, as the population in the aphid-inoculated plants contained far fewer mutants than the original inoculum source. Additional experiments demonstrated that genetic variation in the artificial population of CMV is not reduced during the acquisition of the virus but is significantly reduced during the inoculation period.  相似文献   

13.
棉蚜获得黄瓜花叶病毒的行为与取食过程的关系   总被引:10,自引:4,他引:10  
利用刺吸电位(EPG)及其即时中断技术研究了棉蚜Aphis gossypii传播黄瓜花叶病毒(CMV)的机理,分析电势落差波(pd)及其亚波形在棉蚜获得CMV的取食行为过程中的作用。结果表明:棉蚜的获毒需要pd波的发生,它的获毒效率与穿刺病株细胞膜的次数呈正相关。证明了这种行为是一种细胞内行为。对植物细胞内穿刺产生的电位落差(pd)波亚波形分析的结果显示,棉蚜的获毒发生在pd波的Ⅱ-3阶段,与棉蚜主动吸食植物细胞汁液的活动相关, 这支持了蚜虫获毒的 “吸入假说”。  相似文献   

14.
As the processing mechanism of all known potyviruses involves the activity of cysteine proteinases, we asked whether constitutive expression of a rice cysteine proteinase inhibitor gene could induce resistance against two important potyviruses, tobacco etch virus (TEV) and potato virus Y (PVY), in transgenic tobacco plants. Tobacco lines expressing the foreign gene at varying levels were examined for resistance against TEV and PVY infection. There was a clear, direct correlation between the level of oryzacystatin message, inhibition of papain (a cysteine proteinase), and resistance to TEV and PVY in all lines tested. The inhibitor was ineffective against tobacco mosaic virus (TMV) infection because processing of this virus does not involve cysteine proteinases. These results show that plant cystatins can be used against different potyviruses and potentially also against other viruses, whose replication involves cysteine proteinase activity.  相似文献   

15.
The concentration of potato leafroll luteovirus (PLRV) (c. 1300 ng/g leaf) in singly infected Nicotiana clevelandii plants was increased up to 10-fold in plants co-infected with each of several potyviruses, or with narcissus mosaic potexvirus, carrot mottle virus or each of three tobravirus isolates. With the tobraviruses, PLRV concentration was increased equally by co-infection with either NM-type isolates (coat protein-free cultures containing RNA-1) or M-type isolates (particle-producing cultures containing RNA-1 and RNA-2). In contrast, the accumulation of PLRV was not substantially affected by co-infection with either of two nepoviruses, cucumber mosaic cucumovirus, broad bean mottle bromovirus, alfalfa mosaic virus, pea enation mosaic virus or parsnip yellow fleck virus. The specificity of these interactions between PLRV and sap-transmissible viruses was retained in tests made in Nicotiana benthamiana and when beet western yellows luteovirus was used instead of PLRV.  相似文献   

16.
Experiments were conducted to compare the efficiency of transmission of a strain of pea mosaic virus (PMV) isolated in Czechoslovakia by two strains (clones) of the pea aphidAcyrthosiphon pisum Harris (green and red) and one strain ofMyzus persicae Sulz. PMV is a nonpersistent virus and the preliminary fasting of aphids before acquisition feeding increases the efficiency of aphids in transmission of this virus. In our experiments two hour fasted individuals were used and two periods of acquisition feeding on the source (1 and 5 minutes). On the healthy test plants the aphids were left over night. As the source and test plants pea (Pisum sativum L.) of the cv. Raman were used. During the one minute acquisition period on the source of infection the aphids were observed under the stereoscopic microscope. They usually made two to three probes. During the five minute acquisition feeding time the aphids were not observed and they were taken from the source of infection after a lapse of five minutes. To compare the efficiency in transmission of this virus by these aphids only one aphid per tested plant was used and in all trials only two to four day old nymphs were taken. Differences in transmission efficiency between two strains ofAcyrthosiphon pisum Harris were highly significant. The green strain of pea aphid was the less efficient vector in comparison with the green peach aphid and the red strain of the pea aphid, the latter being the most efficient vector of this virus.  相似文献   

17.
Abstract A potyvirus was isolated from Vanilla fragrans exhibiting leaf distortion, chlorotic and necrotic lesions and vine die-back. The virus can be propagated in Nicotiana clevelandii and N. benthamiana and induces local lesions in Chenopodium amaranticolor and C. quinoa. The flexuous particles have a mean length of 765 nm, pinwheel inclusions are found in systemically infected N. benthamiana leaves and SDS-polyacrylamide gel electrophoresis indicates a single polypeptide of M 32.7 × 103. The virus is transmissible from N. clevelandii to N. clevelandii by the aphid species Myzus persicae and Aphis gossypii. A polyclonal antiserum raised to the Tongan potyvirus failed to react, with the potyvirus associated with mosaic symptoms of V. tahitensis in French Polynesia and ISEM failed to detect any close relationship to 22 other potyviruses.  相似文献   

18.
The multifunctional protein translationally controlled tumour protein (TCTP) was previously identified as necessary for infection by the potyvirus pepper yellow mosaic virus. Using turnip mosaic virus (TuMV) as a model to study potyvirus biology, we confirmed that TCTP has a positive effect on virus infection. Living cell confocal microscopy demonstrated that TCTP colocalises with 6K2-tagged replication vesicles and with a perinuclear globular structure typically observed during potyvirus infection. Also, TCTP silenced protoplasts showed reduced virus accumulation, quantified by qRT-PCR, which suggests an effect on virus replication, translation or other intracellular process. Finally, TCTP silencing in plants reduced the accumulation of two species belonging to Orthotospovirus and a Begomovirus genus, which are not closely related to potyviruses. The results suggest that TCTP is a general susceptibility factor to several unrelated viruses.  相似文献   

19.
Thin sections of mature anthers and pollen grains from three lettuce (Lactuca sativa) plants infected with lettuce mosaic potyvirus (LMV) were studied by immunogold labelling. Labelled LMV particles were present externally on the exine of pollen grains from all plants, but were observed internally in the pollen grains from only one plant. Within mature pollen grains the virus particles were associated with the cytoplasmic bundle inclusions typical of infection by potyviruses. The tapetal plasmodium and the epidermal and endothecial layers of mature anthers from all infected plants also contained labelled virus particles, together with pinwheel and bundle inclusions.  相似文献   

20.

Background  

The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号