首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A novel fibrinogenolytic protease was purified from Bacteroides fragilis strain YCH46. The protease was extracted from cells by ultrasonic treatment and was purified 425-fold with a recovery of 2.1% by sequential procedures using azocasein as a substrate. The purified protease showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 100 kDa, which was consistent with the value obtained by gel filtration, indicating a monomeric native structure. Its optimal pH, Km, and Vmax for azocasein were 7.5, 0.2%, and 286 U/min/mg, respectively. The protease activity was completely inhibited by addition of 1 mM Hg2+, Cu2+, Zn2+, diisopropyl fluorophosphate, N-ethylmaleimide or p-chloromercuribenzoate but not by the inhibitors of metalloprotease or aspartic protease, suggesting that the enzyme is a serine-thiol-like protease. The protease hydrolyzed azocasein, casein, fibrinogen, gelatin, and azocoll, but not bovine serum albumin, ovalbumin, fibrin, fibronectin, immunoglobulins, transferrin, hemoglobin or types I, III, and IV collagen. The enzyme also hydrolyzed the chromogenic substrates alanyl-alanine p-nitroanilide, L -valyl-alanine p-nitroanilide, alanyl-alanyl-valyl-alanine p-nitroanilide, and glycyl-proline p-nitroanilide, but was inert toward L -alanine p-nitroanilide, alanyl-alanyl-alanine p-nitroanilide, and N-α-benzoyl-DL -arginine p-nitroanilide. The protease completely hydrolyzed the α-chain of fibrinogen at 37 C within 10 hr and at the same time the time required for clotting of protease-treated fibrinogen by thrombin was prolonged. The fibrinogenolytic activity of a crude extract of B. fragilis was stronger than that of other species of the Bacteroides fragilis group tested: B. ovatus, B. distasonis, B. eggerthii, B. uniformis, and B. thetaiotaomicron. These results suggest that the fibrinogenolytic protease is an important biological factor in Bacteroides infection.  相似文献   

5.
A manganese-containing superoxide dismutase (MnSOD) has been isolated from extracts of O2-induced Bacteroides fragilis. The enzyme, Mr 43,000, was a dimer composed of noncovalently associated subunits of equal size. A preparation whose specific activity was 1760 U/mg had 1.1 g-atoms Mn, 0.3 g-atoms Fe, and 0.2 g-atoms Zn per mol dimer. Exposing the enzyme to 5 M guanidinium chloride, 20 mM 8-hydroxyquinoline abolished enzymatic activity. Dialysis of the denatured apoprotein in buffer containing either Fe (NH4)2(SO4)2 or MnCl2 restored O2-. scavenging activity. The iron-reconstituted enzyme was inhibited 89% by 2 mM NaN3, similar to other Fe-containing superoxide dismutases. The Mn-reconstituted and native MnSOD were inhibited approximately 50% by 20 mM NaN3. Addition of ZnSO4 to dialysis buffer containing either the iron or manganese salt inhibited restoration of enzymatic activity to the denatured apoprotein. MnSOD migrated as a single protein band coincident with a single superoxide dismutase activity band in 7.5 or 10% acrylamide gels. Isoelectric focusing resulted in a major isozymic form with pI 5.3 and a minor form at pI 5.0. Mixtures of the MnSOD and the iron-containing superoxide (FeSOD), isolated from anaerobically maintained B. fragilis [E. M. Gregory and C. H. Dapper (1983) Arch. Biochem. Biophys. 220, 293-300], migrated as a single band on acrylamide gels and isoelectrically focused to a major protein band (pI 5.3) and a minor band at pI 5.0. The amino acid composition of MnSOD was virtually identical to that of the FeSOD. The data are consistent with synthesis of a single superoxide dismutase apoprotein capable of accepting either Mn or Fe to form the holoenzyme.  相似文献   

6.
For 3 decades, the view of MHCII-dependent antigen presentation has been completely dominated by peptide antigens despite our 2004 discovery in which MHCII was shown to present processed fragments of zwitterionic capsular polysaccharides to T cells. Published findings further demonstrate that polysaccharide A (PSA) from the capsule of Bacteroides fragilis is a potent activator of CD4+ T cells and that these T cells have important biological functions, especially in the maintenance of immunological homeostasis. However, little is known about the nature of T cell recognition of the polysaccharide-MHCII complex or the phenotype of the resulting activated cells. Here, we use next-generation sequencing of the αβT cell receptor of CD4+ T cells from mice stimulated with PSA in comparison with protein antigen simulation and non-immunized controls and found that PSA immunization induced clonal expansion of a small subset of suppressive CD4+CD45RBlow effector/memory T cells. Moreover, the sequences of the complementarity-determining region 3 (CDR3) loop from top clones indicate a lack of specific variable β and joining region use and average CDR3 loop length. There was also a preference for a zwitterionic motif within the CDR3 loop sequences, aligning well with the known requirement for a similar motif within PSA to enable T cell activation. These data support a model in which PSA, and possibly other T cell-dependent polysaccharide antigens, elicits a clonal and therefore specific CD4+ T cell response often characterized by pairing dual-charged CDR3 loop sequences with dual-charged PSA.  相似文献   

7.
8.
YT135.2.8, a Tn4400' insertion mutant of Bacteroides fragilis strain TM4000, grows poorly when used to infect Monika or Chinese hamster ovary (CHO) cell monolayers and is outcompeted by wild-type strains in mixed infections. YT135.2.8 also shows defects in the rat granuloma pouch model system in monoculture and is completely outcompeted by the wild-type strain in a mixed infection. In addition, this mutant shows defects in a new model system consisting of CHO suspension cell columns. All of these defects may be explained by the finding that YT135.2.8 shows decreased tolerance to exposure to atmospheric oxygen (less aerotolerant). The monolayer growth defect (MGD) of YT135.2.8 can be influenced significantly by the presence of sulphur-containing reducing agents (cysteine, dithiothreitol, thiodiglycol) or the non-sulphur reducing agent Tris-(2-carboxylethyl)phosphine (TCEP). The defects in YT135.2.8 can be complemented by a 6.6 kb fragment of the B. fragilis chromosome. DNA sequencing of this fragment and of the regions flanking the Tn4400' insertion in the B. fragilis chromosome revealed the presence of five open reading frames, corresponding to genes bat (Bacteroides aerotolerance) A, B, C, D, E, which form the Batl operon; Tn4400' inserted within batD. All of the hypothetical proteins possess one or more membrane-spanning domains. BatA and BatB show high similarity to each other but, like BatD, they show no match to sequences of known function in the databases. BatC and BatE contain 2-4 repeated sequences similar to the tetratricopeptide repeats (TPRs) seen in many eukaryotic proteins. The function of TPR sequences in protein interactions in other systems leads to the suggestion that the Bat proteins form a complex. The Batl complex may be involved in the generation or export of reducing power equivalents to the periplasm of the B. fragilis cell.  相似文献   

9.
A new type II restriction endonuclease, named BfrBI, was detected in two strains of Bacteroides fragilis, BE3 and AIP 10006 (NCTC 9343T). The enzyme BfrBI, an isoschizomer of NsiI and AvaIII, recognized the hexanucleotide sequence [5'-ATG decreases CAT-3'], with a cleavage site generating blunt ends.  相似文献   

10.
Bacteroides fragilis is an important anaerobic pathogen accounting for up to 10% of bacteremias in adult patients. Enterotoxin producing B. fragilis (ETBF) strains have been identified as enteric pathogens of children and adults. In order to further characterize the B. fragilis pathogenicity island (BfPAI) and using PCR assays for bft- and mpII-metalloprotease genes, we determined the frequency of B. fragilis strains with pattern I (containing the BfPAI and its flanking region), pattern II (lacking both the BfPAI and the flanking region), and pattern III (lacking the BfPAI but containing the flanking region) in 63 blood culture isolates. The results were compared to 197 B. fragilis isolates from different clinical sources. We found 19% of blood culture isolates were pattern I (ETBF), 43% were pattern II (NTBF) and 38% were pattern III (NTBF). Comparatively, B. fragilis isolates from other clinical sources were 10% pattern I, 47% pattern II and 43% pattern III. This suggests that the pathogenicity island and the flanking elements may be general virulence factors of B. fragilis.  相似文献   

11.
A 4.2-kb plasmid (pLV22a) native to Bacteroides fragilis LV22 became fused to a transfer-deficient Bacteroides spp.-Escherichia coli shuttle vector by an inverse transposition event, resulting in a transferrable phenotype. The transfer phenotype was attributable to pLV22a, which was also capable of mobilization within E. coli when coresident with the IncP beta R751 plasmid. Transposon mutagenesis with Tn1000 localized the mobilization region to a 1.5-kb DNA segment in pLV22a. The mobilization region has been sequenced, and five open reading frames have been identified. Mutants carrying disruptions in any of the three genes designated mbpA, mbpB, and mbpC and coding for deduced products of 11.3, 30.4, and 17.1 kDa, respectively, cannot be mobilized when coresident with R751. Mutations in all three genes can be complemented in the presence of the respective wild-type genes, indicating that the products of mbpA, mbpB, and mbpC have roles in the mobilization process and function in trans. The deduced 30.4-kDa MbpB protein contains a 14-amino-acid conserved motif that is also found in the DNA relaxases of a variety of conjugal and mobilizable plasmids and the conjugative transposon Tn4399. Deletion analysis and complementation experiments have localized a cis-acting region of pLV22a within mbpA.  相似文献   

12.
13.
On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis.   总被引:1,自引:0,他引:1  
Z Wang  W Fast  S J Benkovic 《Biochemistry》1999,38(31):10013-10023
The catalytic mechanism of metallo-beta-lactamase from Bacteroides fragilis, a dinuclear Zn(II)-containing enzyme responsible for multiple antibiotic resistance, has been investigated by using nitrocefin as a substrate. Rapid-scanning and single-wavelength stopped-flow studies revealed the accumulation during turnover of an enzyme-bound intermediate with intense absorbance at 665 nm (epsilon = 30 000 M(-1) cm(-1)). The proposed minimum kinetic mechanism for the B. fragilis metallo-beta-lactamase-catalyzed nitrocefin hydrolysis [Wang, Z., and Benkovic, S. J. (1998) J. Biol. Chem. 273, 22402-22408] was confirmed, and more accurate kinetic parameters were obtained from computer simulations and fitting. The intermediate was shown to be a novel anionic species bound to the enzyme through a Zn-acyl linkage and contains a negatively charged nitrogen leaving group. This is the first time such an intermediate was observed in the catalytic cycle of a Zn(II)-containing hydrolase and is evidence for a unique beta-lactam hydrolysis mechanism in which the amine can leave as an anion; prior protonation is not required. The electrostatic interaction between the negatively charged intermediate and the positively charged dinuclear Zn(II) center of the enzyme is important for stabilization of the intermediate. The catalytic reaction was accelerated in the presence of exogenous nucleophiles or anions, and neither the product nor the enzyme was modified during turnover, indicating that a Zn-bound hydroxide (rather than Asp-103) is the active site nucleophile. On the basis of all the information on hand, a catalytic mechanism of the B. fragilis metallo-beta-lactamase is proposed.  相似文献   

14.
15.
The Bacteroides fragilis conjugal plasmid pBFTM10 contains two genes, btgA and btgB, and a putative oriT region necessary for transfer in Bacteroides fragilis and Escherichia coli. The BtgA protein was predicted to contain a helix-turn-helix motif, indicating possible DNA binding activity. DNA sequence analysis of the region immediately upstream of btgA revealed three sets of inverted repeats, potentially locating the oriT region. A 304-bp DNA fragment comprising this putative oriT region was cloned and confirmed to be the functional pBFTM10 oriT by bacterial conjugation experiments using E. coli and B. fragilis. btgA was cloned and overexpressed in E. coli, and the purified protein was used in electrophoretic mobility shift assays, demonstrating specific binding of BtgA protein to its cognate oriT. DNase I footprint analysis demonstrated that BtgA binds apparently in a single-stranded fashion to the oriT-containing fragment, overlapping inverted repeats I, II, and III and the putative nick site.  相似文献   

16.
17.
The metallo-beta-lactamases require zinc or cadmium for hydrolyzing beta-lactam antibiotics and are inhibited by mercurial compounds. To data, there are no clinically useful inhibitors of this class of enzymes. The crystal structure of the Zn(2+)-bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam ring. To study the metal coordination further, the crystal structures of a Cd(2+)-bound enzyme and of an Hg(2+)-soaked zinc-containing enzyme have been determined at 2.1 A and 2.7 A, respectively. Given the diffraction resolution, the Cd(2+)-bound enzyme exhibits the same active-site architecture as that of the Zn(2+)-bound enzyme, consistent with the fact that both forms are enzymatically active. The 10-fold reduction in activity of the Cd(2+)-bound molecule compared with the Zn(2+)-bound enzyme is attributed to fine differences in the charge distribution due to the difference in the ionic radii of the two metals. In contrast, in the Hg(2+)-bound structure, one of the zinc ions, Zn2, was ejected, and the other zinc ion, Zn1, remained in the same site as in the 2-Zn(2+)-bound structure. Instead of the ejected zinc, a mercury ion binds between Cys 104 and Cys 181, 4.8 A away from Zn1 and 3.9 A away from the site where Zn2 is located in the 2-Zn(2+)-bound molecule. The perturbed binuclear metal cluster explains the inactivation of the enzyme by mercury compounds.  相似文献   

18.
Bacteroides fragilis, a human gastrointestinal commensal and an opportunistic pathogen, utilizes simple and complex sugars and polysaccharides for growth in the large intestine and at sites of infection. Because B. fragilis lacks transport-linked sugar phosphorylation systems, cytoplasmic kinase(s) was expected to be required for the phosphorylation of hexoses and hexosamines. We have now identified two hexose kinases that are important for growth of B. fragilis on glucose, mannose, and other sugars. One kinase (RokA), a member of the ROK family of proteins, was found to be the sole kinase for activation of N-acetyl-D-glucosamine (NAG). The other kinase (HexA) is responsible for the majority of the glucose kinase activity in the cell, although a hexA deletion mutant strain was not defective for growth on any substrate tested. Deletion of both the rokA and hexA kinase genes resulted in inability of the cell to use glucose, mannose, NAG, and many other sugars. We purified RokA and determined its approximate molecular mass to be 36.5 kDa. The purified RokA protein was shown to phosphorylate several substrates, including glucose, NAG, and mannose, but not N-acetylmannosamine or N-acetylneuraminic acid. Phylogenetic analysis of RokA showed that it is most similar to kinases from the Cytophaga-Flavibacterium-Bacteroides group, while HexA was most similar to other bacterial hexokinases and eukaryotic hexokinases.  相似文献   

19.
Tn4551, a clindamycin resistance (Ccr) transposon from the R plasmid pBI136, was cloned onto an Escherichia coli-Bacteroides shuttle vector which could replicate normally in E. coli but was maintained unstably in Bacteroides fragilis. To aid in cloning and to ensure maintenance of Tn4551 in E. coli, a kanamycin resistance determinant (Kmr) was inserted in the transposon. The transposon-bearing shuttle vector pFD197 was transformed into B. fragilis 638, and putative insertions of Tn4551::Kmr were identified by screening for resistance to clindamycin and plasmid content. Southern hybridization analyses were used to verify integration of the transposon in the B. fragilis chromosome, and the frequency of insertion was estimated at 7.8 X 10(-5) events per generation. In 57% of the isolates tested a second integration event also occurred. This second insertion apparently involved just a single copy of the 1.2-kilobase repeat sequence which flanks the transposon. In addition, Tn4551::Kmr appeared to function as a transposon in E. coli. Evidence for this was obtained by the isolation of transposon insertions into the bacteriophage P1 genome. Finally, the transposon vector, pFD197, could be mobilized to other B. fragilis strains in which transposition was detected. Mobilization from the strain 638 background was via a conjugation like process, but occurred in the absence of known conjugative elements or other detectable plasmids. This result suggested the presence of a host-encoded transfer system in this B. fragilis strain.  相似文献   

20.
The complete DNA sequence of the capsular locus 23F of Streptococcus pneumoniae is presented. The 18.6-kb cps23f locus is composed of 18 open reading frames flanked at the 5′ and 3′ ends by the genes dexB and aliA, an arrangement similar to those of some of the other identified cps loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号