首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In pemphigoid gestationis (PG), autoantibodies target collagen XVII, a hemidesmosomal transmembrane protein, which is an important element in cutaneous epithelial adhesion and signalling. We report that collagen XVII is expressed in the first trimester and term syncytial and cytotrophoblastic cells of normal placenta and in epithelial cells of amniotic membrane. Immunoelectron microscopy confirmed the localization of collagen XVII to the hemidesmosomes of amniotic epithelium. Examination of three PG placentas showed mild villitis, but there were no differences between collagen XVII expression levels or immunostaining signals as compared to normal placenta. Collagen XVII expression was also detected in cultured extravillous trophoblast HTR-8/SVneo cells, where collagen XVII expression was upregulated by PMA and TGF-beta1. Interestingly, the presence of Col15, the cell migration domain of collagen XVII, induced the migration of HTR-8/SVneo cells in transmigration assay. Analysis of amniotic fluid samples at different gestational weeks revealed that a large quantity of collagen XVII ectodomain was shed into amniotic fluid throughout pregnancy. Biochemical and immunoblotting analysis indicated that the ectodomain in amniotic fluid is structurally very similar to the ectodomain produced by cultured keratinocytes. Cultured cells from amniotic fluid samples also expressed collagen XVII. Our results suggest that collagen XVII may contribute to the invasion of extravillous trophoblasts during placental development and is also required for the integrity of amniotic basement membrane. Although the exact pathomechanism of PG is still largely unknown, the clinical symptoms of PG are initiated after the expression of collagen XVII in placenta during the first trimester of pregnancy.  相似文献   

2.
The 180?kDa transmembrane collagen XVII is known to anchor undifferentiated keratinocytes to the basement membrane in hemidesmosomes while constitutively shedding a 120?kDa ectodomain. Inherited mutations or auto-antibodies targeting collagen XVII cause blistering skin disease. Collagen XVII is down-regulated in mature keratinocytes but re-expressed in skin cancer. By recently detecting collagen XVII in melanocyte hyperplasia, here we tested its expression in benign and malignant melanocytic tumors using endodomain and ectodomain selective antibodies. We found the full-length collagen XVII protein in proliferating tissue melanocytes, basal keratinocytes and squamous cell carcinoma whereas resting melanocytes were negative. Furthermore, the cell-residual 60?kDa endodomain was exclusively detected in 62/79 primary and 15/18 metastatic melanomas, 8/9 melanoma cell lines, HT199 metastatic melanoma xenografts and atypical nests in 8/63 dysplastic nevi. The rest of 19 nevi including common, blue and Spitz subtypes were also negative. In line with the defective ectodomain, sequencing of COL17A1 gene revealed aberrations in the ectodomain coding region including point mutations. Collagen XVII immunoreaction-stained spindle cell melanomas, showed partly overlapping profiles with those of S100B, Melan A and HMB45. It was concentrated at vertical melanoma fronts and statistically associated with invasive phenotype. Antibody targeting the extracellular aa507-529 terminus of collagen XVII endodomain promoted apoptosis and cell adhesion, while inhibiting proliferation in HT199 cells. These results suggest that the accumulation of collagen XVII endodomain in melanocytic tumors is associated with malignant transformation to be a potential marker of malignancy and a target for antibody-induced melanoma apoptosis.  相似文献   

3.
Expression of the alpha(v)beta6 integrin is strikingly upregulated in several types of carcinoma, including human oral squamous cell carcinoma (SCC). Employing a neutralizing monoclonal antibody to alpha(v)beta6, we investigated its role in cell adhesion, proliferation, migration, and in vivo growth of an invasive human SCC line, termed HSC-3. We found that alpha(v)beta6 is strictly required for HSC-3 cell growth in a three-dimensional collagen gel and also prominently contributes to cell migration in two different assay systems. In addition, the anti-alpha(v)beta6 antibody inhibited the invasive growth of HSC-3 cells transorally injected into nude mice. In the presence of the coinjected antibody, the average tumor size at 10 days was reduced by 59%. Histologically, antibody-treated tumors appeared less invasive than control tumors. Furthermore, intravenous application of a neutralizing antibody to the alpha(v) integrin subunit retarded HSC-3 tumor growth. These results point to a possible critical role of the alpha(v)beta6 integrin in controlling growth and invasion of human oral cancer cells.  相似文献   

4.
Rac1 activity, polarity, lamellipodial dynamics, and directed motility are defective in keratinocytes exhibiting deficiency in β4 integrin or knockdown of the plakin protein Bullous Pemphigoid Antigen 1e (BPAG1e). The activity of Rac, formation of stable lamellipodia, and directed migration are restored in β4 integrin-deficient cells by inducing expression of a truncated form of β4 integrin, which lacks binding sites for BPAG1e and plectin. In these same cells, BPAG1e, the truncated β4 integrin, and type XVII collagen (Col XVII), a transmembrane BPAG1e-binding protein, but not plectin, colocalize along the substratum-attached surface. This finding suggested to us that Col XVII mediates the association of BPAG1e and α6β4 integrin containing the truncated β4 subunit and supports directed migration. To test these possibilities, we knocked down Col XVII expression in keratinocytes expressing both full-length and truncated β4 integrin proteins. Col XVII-knockdown keratinocytes exhibit a loss in BPAG1e-α6β4 integrin interaction, a reduction in lamellipodial stability, an impairment in directional motility, and a decrease in Rac1 activity. These defects are rescued by a mutant Col XVII protein truncated at its carboxyl terminus. In summary, our results suggest that in motile cells Col XVII recruits BPAG1e to α6β4 integrin and is necessary for activation of signaling pathways, motile behavior, and lamellipodial stability.  相似文献   

5.
Collagen XVII, a type II transmembrane protein and epithelial adhesion molecule, can be proteolytically shed from the cell surface to generate a soluble collagen. Here we investigated the release of the ectodomain and identified the enzymes involved. After surface biotinylation of keratinocytes, the ectodomain was detectable in the medium within minutes and remained stable for >48 h. Shedding was enhanced by phorbol esters and inhibited by metalloprotease inhibitors, including hydroxamates and TIMP-3, but not by inhibitors of other protease classes or by TIMP-2. This profile implicated MMPs or ADAMs as candidate sheddases. MMP-2, MMP-9 and MT1-MMP were excluded, but TACE, ADAM-10 and ADAM-9 were shown to be expressed in keratinocytes and to be actively involved. Transfection with cDNAs for the three ADAMs resulted in increased shedding and, vice versa, in TACE-deficient cells shedding was significantly reduced, indicating that transmembrane collagen XVII represents a novel class of substrates for ADAMs. Functionally, release of the ectodomain of collagen XVII from the cell surface was associated with altered keratinocyte motility in vitro.  相似文献   

6.
Collagen XVII is a transmembrane collagen and the major autoantigen of the autoimmune skin blistering disease bullous pemphigoid. Collagen XVII is proteolytically released from the membrane, and the pathogenic epitope harbors the cleavage site for its ectodomain shedding, suggesting that proteolysis has an important role in regulating the function of collagen XVII in skin homeostasis. Previous studies identified ADAMs 9, 10, and 17 as candidate collagen XVII sheddases and suggested that ADAM17 is a major sheddase. Here we show that ADAM17 only indirectly affects collagen XVII shedding and that ADAMs 9 and 10 are the most prominent collagen XVII sheddases in primary keratinocytes because (a) collagen XVII shedding was not stimulated by phorbol esters, known activators of ADAM17, (b) constitutive and calcium influx-stimulated shedding was sensitive to the ADAM10-selective inhibitor GI254023X and was strongly reduced in Adam10−/− cells, (c) there was a 55% decrease in constitutive collagen XVII ectodomain shedding from Adam9−/− keratinocytes, and (d) H2O2 enhanced ADAM9 expression and stimulated collagen XVII shedding in skin and keratinocytes of wild type mice but not of Adam9−/− mice. We conclude that ADAM9 and ADAM10 can both contribute to collagen XVII shedding in skin with an enhanced relative contribution of ADAM9 in the presence of reactive oxygen species. These results provide critical new insights into the identity and regulation of the major sheddases for collagen XVII in keratinocytes and skin and have implications for the treatment of blistering diseases of the skin.Collagen XVII (also called BP180 or BPAG2) is a hemidesmosomal adhesion component in the skin and mucosa and belongs to the emerging group of collagenous transmembrane proteins (1). This type II oriented transmembrane protein is involved in the molecular pathology of human skin diseases. Mutations in the COL17A1 gene are associated with junctional epidermolysis bullosa, a genetic skin blistering disease (2). Patients with bullous pemphigoid and related autoimmune bullous dermatoses have tissue-bound and circulating autoantibodies targeting collagen XVII (3). Structural and functional changes of collagen XVII play an important role in these diseases, although the molecular pathology is not yet fully understood. The collagen XVII consists of three 180-kDa α1 (XVII) chains, each with an intracellular N-terminal domain, a short transmembrane stretch, and a flexible extracellular C-terminal ectodomain with collagenous (Col)2 subdomains that are interrupted by short non-collagenous (NC) sequences. The human and murine collagen XVII molecules differ in size and in the number of the Col and NC domains. Human collagen XVII consists of 1497 amino acid residues with 15 Col and 16 NC domains, whereas the murine form, which is 86% identical (4), consists of 1433 amino acid residues with 13 Col and 14 NC domains. In humans the extracellular linker domain NC16A between the plasma membrane and the Col15 domain is functionally important because it is believed to play a role in both ectodomain shedding and in the proper folding of the triple helical structure of collagen XVII (57).Our previous studies revealed two forms of collagen XVII, the 180-kDa membrane-anchored form and the soluble 120-kDa form. The latter represents the extracellular collagenous ectodomain, which is released by cleavage by membrane-anchored metalloproteinases of the a disintegrin and metalloproteinase (ADAM) family (8). The shed ectodomain of collagen XVII is very stable in vivo and in vitro. In wound scratch assays, both addition of the purified soluble ectodomain or overexpression of ADAMs suppressed cell motility (8), indicating that the ectodomain has a role in regulating keratinocyte-matrix interactions. In the context of the known functions of collagen XVII as an adhesion molecule, its shedding could therefore regulate its functions in keratinocyte migration, differentiation, and proliferation.ADAMs are also involved in the release of several other type I or type II transmembrane proteins and are considered to be critical regulators of epidermal growth factor receptor signaling, tumor necrosis factor α release, and Notch signaling to name a few examples (9, 10). Previously ADAM9, ADAM10, and ADAM17 had been identified as potential sheddases for collagen XVII in keratinocytes by overexpression in cell-based assays (8). Moreover Adam17−/− keratinocytes had 50% diminished collagen XVII shedding, which was interpreted to suggest that ADAM17 represents an important, if not the major, physiological collagen XVII sheddase (8). The major goal of the current study was to further explore the contribution of ADAM17 and other candidate sheddases to the release of collagen XVII from primary keratinocytes and mouse skin. The identification of the major collagen XVII sheddases and their regulation is critical for understanding the role of collagen XVII shedding in the pathogenesis of skin diseases.  相似文献   

7.
Ecto-phosphorylation is emerging as an important mechanism to regulate cellular ligand interactions and signal transduction. Here we show that extracellular phosphorylation of the cell surface receptor collagen XVII regulates shedding of its ectodomain. Collagen XVII, a member of the novel family of collagenous transmembrane proteins and component of the hemidesmosomes, mediates adhesion of the epidermis to the dermis in the skin. The ectodomain is constitutively shed from the cell surface by metalloproteinases of the ADAM (a disintegrin and metalloproteinase) family, mainly by tumor necrosis factor-alpha converting enzyme (TACE). We used biochemical, mutagenesis, and structural modeling approaches to delineate mechanisms controlling ectodomain cleavage. A standard assay for extracellular phosphorylation, incubation of intact keratinocytes with cell-impermeable [gamma-(32)P]ATP, led to collagen XVII labeling. This was significantly diminished by both broad-spectrum extracellular kinase inhibitor K252b and a specific casein kinase 2 (CK2) inhibitor. Collagen XVII peptides containing a putative CK2 recognition site were phosphorylated by CK2 in vitro, disclosing Ser(542) and Ser(544) in the ectodomain as phosphate group acceptors. Phosphorylation of Ser(544) in vivo and in vitro was confirmed by immunoblotting of epidermis and HaCaT keratinocyte extracts with phosphoepitope-specific antibodies. Functionally, inhibition of CK2 kinase activity or mutation of the phosphorylation acceptor Ser(544) to Ala significantly increased ectodomain shedding, whereas overexpression of CK2alpha inhibited cleavage of collagen XVII. Structural modeling suggested that the phosphorylation of serine residues prevents binding of TACE to its substrate. Thus, extracellular phosphorylation of collagen XVII by ecto-CK2 inhibits its shedding by TACE and represents novel mechanism to regulate adhesion and motility of epithelial cells.  相似文献   

8.
Collagen XVII, a type II transmembrane protein in hemidesmosomes, is involved in the anchorage of stratified epithelia to the underlying mesenchyme. Its functions are regulated by ectodomain shedding, and its genetic defects lead to epidermal detachment in junctional epidermolysis bullosa (JEB), a heritable skin fragility syndrome, but the molecular disease mechanisms remain elusive. Here we used a spontaneously occurring homozygous COL17A1 deletion mutant in JEB to discern glycosylation of collagen XVII. The mutation truncated the distal ectodomain and positioned the only N-glycosylation site 34 amino acids from the newly formed C terminus, which impaired efficient N-glycosylation. Immunofluorescence staining of authentic JEB keratinocytes and of COS-7 cells transfected with the mutant indicated intracellular accumulation of collagen XVII precursor molecules. Cell surface biotinylation and quantification of ectodomain shedding demonstrated that only about 15% of the truncated collagen XVII reached the cell surface. The cell surface-associated molecules were N-glycosylated in a normal manner, in contrast to the molecules retained within the cells, indicating that N-glycosylation of the ectodomain is required for targeting of collagen XVII to the plasma membrane and that reduced accessibility of the N-glycosylation site negatively regulates this process. Functional consequences of the strong reduction of collagen XVII on the cell surface included scattered deposition of cell adhesion molecule laminin 5 into the extracellular environment and, as a consequence of faulty collagen XVII-laminin ligand interactions, aberrant motility of the mutant cells.  相似文献   

9.
Type XVII collagen (BP180) is a keratinocyte transmembrane protein that exists as the full-length protein in hemidesmosomes and as a 120-kDa shed ectodomain in the extracellular matrix. The largest collagenous domain of type XVII collagen, COL15, has been described previously as a cell adhesion domain (Tasanen, K., Eble, J. A., Aumailley, M., Schumann, H., Baetge, J, Tu, H., Bruckner, P., and Bruckner-Tuderman, L. (2000) J. Biol. Chem. 275, 3093-3099). In the present work, the integrin binding of triple helical, human recombinant COL15 was tested. Solid phase binding assays using recombinant integrin alpha(1)I, alpha(2)I, and alpha(10)I domains and cell spreading assays with alpha(1)beta(1)- and alpha(2)beta(1)-expressing Chinese hamster ovary cells showed that, unlike other collagens, COL15 was not recognized by the collagen receptors. Denaturation of the COL15 domain increased the spreading of human HaCaT keratinocytes, which could migrate on the denatured COL15 domain as effectively as on fibronectin. Spreading of HaCaT cells on the COL15 domain was mediated by alpha(5)beta(1) and alpha(V)beta(1) integrins, and it could be blocked by RGD peptides. The collagen alpha-chains in the COL15 domain do not contain RGD motifs but, instead, contain 12 closely related KGD motifs, four in each of the three alpha-chains. Twenty-two overlapping, synthetic peptides corresponding to the entire COL15 domain were tested; three peptides, all containing the KGD motif, inhibited the spreading of HaCaT cells on denatured COL15 domain. Furthermore, this effect was lost by mutation from D to E (KGE instead of KGD). We suggest that the COL15 domain of type XVII collagen represents a specific collagenous structure, unable to interact with the cellular receptors for other collagens. After being shed from the cell surface, it may support keratinocyte spreading and migration.  相似文献   

10.
α-Helical coiled coils, frequent protein oligomerization motifs, are commonly observed in vital proteins. Here, using collagen XVII as an example, we provide evidence for a novel function of coiled coils in the regulation of ectodomain shedding. Transmembrane collagen XVII, an epithelial cell surface receptor, mediates dermal-epidermal adhesion in the skin, and its dysfunction is linked to human skin blistering diseases. The ectodomain of this collagen is constitutively shed from the cell surface by proteinases of a disintegrin and metalloprotease family; however, the mechanisms regulating shedding remain elusive. Here, we used site-specific mutagenesis to target the coiled-coil heptad repeats within the juxtamembranous, extracellular noncollagenous 16th A (NC16A) domain of collagen XVII. This resulted in a substantial increase of ectodomain shedding, which was not mediated by disintegrin and metalloproteases. Instead, conformational changes induced by the mutation(s) unmasked a furin recognition sequence that was used for cleavage. This study shows that apart from their functions in protein oligomerization, coiled coils can also act as regulators of ectodomain shedding depending on the biological context.  相似文献   

11.
Collagen XVII, a hemidesmosomal component, mediates the adhesion of epidermal keratinocytes to the underlying basement membrane. It exists as a full-length transmembrane protein and a soluble ectodomain that is proteolytically released from the cell surface by sheddases of a disintegrin and metalloproteinase (ADAM) family; TACE, the tumor necrosis factor-alpha-converting enzyme, is the major physiological proteinase. Because both collagen XVII and the ADAMs are transmembrane proteins, their plasma membrane microenvironment can influence shedding. Lipid rafts, assemblies of sphingolipids and cholesterol within the plasma membrane, are responsible for the separation of membrane proteins and are thought to regulate shedding of cell surface proteins. In this study we analyzed the influence of the cholesterol-depleting agent methyl-beta-cyclodextrin (MbetaCD), which disintegrates lipid rafts, on the shedding of collagen XVII in HaCaT keratinocytes and in transfected COS-7 cells. Increasing concentrations of MbetaCD led to a dose-dependent decrease of membrane cholesterol levels and to stimulation of collagen XVII shedding. The stimulation was completely inhibited by sheddase inhibitors, and experiments with COS-7 cells co-transfected with TACE and collagen XVII demonstrated that TACE mediated the low cholesterol-dependent shedding. Co-patching analysis by double immunofluorescence staining revealed co-localization of collagen XVII with the raft resident phosphatidylinositol-linked placental alkaline phosphatase and segregation from the non-raft protein human transferrin receptor, indicating that a majority of collagen XVII molecules was incorporated into lipid rafts. These data deliver the first evidence for the role of plasma membrane lipid organization in the regulation of collagen XVII shedding and, therefore, in the regulation of keratinocyte migration and differentiation.  相似文献   

12.
In most stem cell systems, the organization of the stem cell niche and the anchoring matrix required for stem cell maintenance are largely unknown. We report here that collagen XVII (COL17A1/BP180/BPAG2), a hemidesmosomal transmembrane collagen, is highly expressed in hair follicle stem cells (HFSCs) and is required for the maintenance not only of HFSCs but also of melanocyte stem cells (MSCs), which do not express Col17a1 but directly adhere to HFSCs. Mice lacking Col17a1 show premature hair graying and hair loss. Analysis of Col17a1-null mice revealed that COL17A1 is critical for the self-renewal of HFSCs through maintaining their quiescence and immaturity, potentially explaining the mechanism underlying hair loss in human COL17A1 deficiency. Moreover, forced expression of COL17A1 in basal keratinocytes, including HFSCs, in Col17a1-null mice rescues MSCs from premature differentiation and restores TGF-β signaling, demonstrating that HFSCs function as a critical regulatory component of the MSC niche.  相似文献   

13.
14.
Collagen XVII is a hemidesmosomal transmembrane molecule important for epithelial adhesion in the skin. It exists in two forms, as a full-length protein and as a soluble ectodomain that is shed from the keratinocyte surface by furin-mediated proteolysis. To obtain information on the conformation and the functions of this unusual collagen, its largest collagenous domain, Col15, was expressed in a eukaryotic episomal expression system and purified by DEAE and fast protein liquid- Mono S chromatography. The protein was triple-helical (T(m) of 26.5 degrees C) when produced in cultures containing ascorbic acid. When the vitamin supply was limited, the 4-hydroxyproline content was reduced from 74 to 9%, which, in turn, resulted in a drastic reduction of the stability of the triple helix. The glycine substitution mutation G627V associated with junctional epidermolysis bullosa, a human blistering skin disease, also had a striking effect on thermal stability of rCol15 causing partial unfolding already at 4 degrees C. Col15 promoted cell adhesion of epithelial and fibroblastic cell lines with a beta1 integrin-mediated mechanism. In concert with this, in acquired autoimmune blistering skin diseases, circulating IgG and IgA autoantibodies were found to target rCol15r.  相似文献   

15.
The turnover of extracellular matrix liberates various cryptic molecules with novel biological activity. Among these are the collagen-derived anti-angiogenic fragments, some of which are suggested to affect carcinoma cells also directly. Arresten is an endogenous angiogenesis inhibitor that is derived from the non-collagenous domain of the basement membrane collagen IV α1 chain. As the mere prevention of tumor angiogenesis leads to hypoxia that can result in selection of more aggressive cell types and reduces the efficacy of chemotherapy, we aimed here to elucidate how arresten influences the aggressive human carcinoma cells. Arresten efficiently inhibited migration and invasion of HSC-3 tongue carcinoma cells in culture and in an organotypic model. Subcutaneous Arr-HSC xenografts grew markedly more slowly in nude mice and showed reduced tumor cell proliferation, vessel density and local invasiveness. In the organotypic assay, HSC-3 cells overproducing arresten (Arr-HSC) showed induction of cell death. In monolayer culture the Arr-HSC cells grew in aggregated cobblestone-like clusters and, relative to the control cells, showed increased expression and localization of epithelial marker E-cadherin in cell-cell contacts. Application of electric cell-substrate impedance sensing (ECIS) further supported our observations on altered morphology and motility of the Arr-HSC cells. Administration of a function-blocking α1 integrin antibody abolished the impedance difference between the Arr-HSC and control cells suggesting that the effect of arresten on promotion of HSC-3 cell-cell contacts and cell spreading is at least partly mediated by α1β1 integrin. Collectively, our data suggest novel roles for arresten in the regulation of oral squamous carcinoma cell proliferation, survival, motility and invasion through the modulation of cell differentiation state and integrin signaling.  相似文献   

16.
Collagen XVII is a transmembrane component of hemidesmosomal cells with important functions in epithelial-basement membrane interactions. Here we report on properties of the extracellular ectodomain of collagen XVII, which harbors multiple collagenous stretches. We have recombinantly produced subdomains of the collagen XVII ectodomain in a mammalian expression system. rColXVII-A spans the entire ectodomain from deltaNC16a to NC1, rColXVII-B is similar but lacks the NC1 domain, a small N-terminal polypeptide rColXVII-C encompasses domains deltaNC16a to C15, and a small C-terminal polypeptide rColXVII-D comprises domains NC6 to NC1. Amino acid analysis of rColXVII-A and -C demonstrated prolyl and lysyl hydroxylation with ratios for hydroxyproline/proline of 0.4 and for hydroxylysine/lysine of 0.5. A small proportion of the hydroxylysyl residues in rColXVII-C ( approximately 3.3%) was glycosylated. Limited pepsin and trypsin degradation assays and analyses of circular dichroism spectra clearly demonstrated a triple-helical conformation for rColXVII-A, -B, and -C, whereas the C-terminal rColXVII-D did not adopt a triple-helical fold. These results were further substantiated by electron microscope analyses, which revealed extended molecules for rColXVII-A and -C, whereas rColXVII-D appeared globular. Thermal denaturation experiments revealed melting temperatures of 41 degrees C (rColXVII-A), 39 degrees C (rColXVII-B), and 35 degrees C (rColXVII-C). In summary, our data suggest that triple helix formation in the ectodomain of ColXVII occurs with an N- to C-terminal directionality.  相似文献   

17.
The influence of alphaVbeta3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing beta3 integrin status. Overexpression of beta3 integrin caused increased cell surface expression of alphaV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. beta3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, alphaVbeta3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of beta3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with beta3 integrin expression. Although our studies confirm important biological effects of alphaVbeta3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, beta3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by alphaVbeta3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.  相似文献   

18.
Polysialoganglioside GT1b, a keratinocyte membrane glycosphingolipid, inhibits normal keratinocyte adhesion and migration on a fibronectin matrix. The specificity of the inhibition for cells plated on a fibronectin matrix and competition of GT1b inhibition with peptide RGDS suggest that GT1b abrogates the α5β1/fibronectin interaction. We examined the effects of GT1b on the adhesion and migration of keratinocyte-derived cell lines and correlated GT1b responsiveness and α5β1integrin expression. GT1b (5 nM) significantly inhibited migration of normal human keratinocytes, immortalized keratinocytes, and squamous cell carcinoma SCC12F2 cells on fibronectin, but not on collagen I. Concentrations as high as 5 μM had no effect on SCC13 or HaCaT cells. Likewise, GT1b inhibited fibronectin-dependent cell adhesion of normal human keratinocytes, immortalized keratinocytes, and SCC12F2 cells, but had no effect on SCC13 or HaCaT cells. Flow cytometric and Western immunoblot analysis of integrin expression showed significantly decreased α5and β1integrin expression in SCC13 and HaCaT cells compared to normal keratinocytes, immortalized keratinocytes, and SCC12F2 cells. Incubation with TGF-β1 increased α5β1integrin expression and induced responsiveness to GT1b in HaCaT cells. These data imply that GT1b “response” requires sufficient expression of α5β1and further suggest that the mechanism of the inhibitory effect of GT1b involves GT1b/α5β1interaction.  相似文献   

19.
SCC4 human keratinocytes are derived from a squamous cell carcinoma of the tongue and undergo very little spontaneous differentiation. Introduction of a wild-type beta 1 integrin subunit into SCC4 cells stimulates differentiation, suggesting either that the cells have a defect in the integrin signaling pathways that control differentiation or that the beta1 subunit itself is defective. Here we describe a heterozygous mutation in the SCC4 beta 1 subunit. The mutation, T188I, maps to the I-like domain. It results in constitutive activation of ligand binding, irrespective of the partner alpha subunit, in solid phase assays with recombinant protein and in living cells. The mutation promotes cell spreading, but not proliferation, motility, or invasiveness. It results in sustained activation of Erk MAPK independent of cell spreading. When introduced into SCC4 keratinocytes, the wild-type beta1 integrin stimulates differentiation, whereas the mutant is inactive. Activation of beta 1 integrins in normal keratinocytes also suppresses differentiation. These results establish, for the first time, mutation as a mechanism by which integrins can contribute to neoplasia, because the degree of differentiation in epithelial cancers is inversely correlated with prognosis. They also provide new insights into how integrins regulate keratinocyte differentiation.  相似文献   

20.
Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC). To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO) and HPV-positive, wild-type (HPV/WT) animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号