首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用 3H-秋水仙碱与微管蛋白间的特异结合及DEAE纤维素对微管蛋白的离子交换作用,连续测定小鼠、鸡胚脑发育过程中的脑微管蛋白的合成变化。结果表明脑微管蛋白的合成速度均在其脑发育的临界期时达到最高峰。此时恰是甲状腺功能逐渐完善的时期。当小鼠进入育龄期时,雌雄鼠脑微管蛋白含量差异显著。可能说明性激素对微管蛋白的合成有重要影响。  相似文献   

2.
以3H-秋水仙碱为探针,测定小鼠脑微管蛋白含量.结果表明雌性激素具有显著的促进成年鼠脑微管蛋白合成的作用.与雌性激素相比,雄性激素促进脑微管蛋白合成的作用较弱.特别值得指出的是雌性激素促进脑微管蛋白合成的作用发生在脑发育的临界期之外,而此时甲状腺激素早已丧失了促进脑微管蛋白合成的作用.因此雌性激素在维护成年脑结构和功能的完整完善方面起着重要作用,而且这种作用可能会获得新的应用.  相似文献   

3.
Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.  相似文献   

4.
The specific inhibitory effect of colchicine upon protein secretion by lacrimal glands could be related to the formation of a complex between colchicine and tubulin from the soluble fraction of the gland. By gel electrophoresis under nondissociating conditions, it is shown that this complex is similar to the colchicine . tubulin complex from brain. The complex isolated from lacrimal glands is highly inhibitory upon brain tubulin assembly since as low as 0.07 microM complex impedes the polymerization of 8 microM tubulin by 50%, compared to 3 microM for free colchicine. Therefore, a small percentage of complexed tubulin (0.9%) is enough for polymerization to be blocked. In lacrimal glands the complex might prevent the polymerization of tubulin, and colchicine shift the tubulin in equilibrium microtubules equilibrium to microtubules disassembly. The disorganization of the labile microtubular system could lead to a modification of the transport of the secretory granules and to a perturbation of secretion.  相似文献   

5.
The thermal depolymerization procedure of Stephens (1970. J. Mol. Biol. 47:353) has been employed for solubilization of Strongylocentrotus purpuratus sperm tail outer doublet microtubules with the use of a buffer during solubilization which is of optimal pH and ionic strength for the preservation of colchicine binding activity of chick embryo brain tubulin. Colchicine binding values were corrected for first-order decay during heat solubilization at 50°C (t½ = 5.4 min) and incubation with colchicine at 37°C in the presence of vinblastine sulfate (t½ = 485 min). The colchicine binding properties of heat-solubilized outer doublet tubulin were qualitatively identical with those of other soluble forms of tubulin. The solubilized tubulin (mol wt, 115,000) bound 0.9 ± 0.2 mol of colchicine per mol of tubulin, with a binding constant of 6.3 x 105 liters/mol at 37°C. The colchicine binding reaction was both time and temperature dependent, and the binding of colchicine was prevented in a competitive manner by podophyllotoxin (Ki = 1.3 x 10-6 M). The first-order decay of colchicine binding activity was substantially decreased by the addition of the vinca alkaloids, vinblastine sulfate or vincristine sulfate, thus demonstrating the presence of a vinca alkaloid binding site(s) on the outer doublet tubulin. Tubulin contained within the assembled microtubules did not decay. Intact outer doublet microtubules bound less than 0.001 mol of colchicine per mol of tubulin contained in the microtubules, under conditions where soluble tubulin would have bound 1 mol of colchicine per mol of tubulin (saturating concentration of colchicine, no decay of colchicine binding activity). The presence of colchicine had no effect on the rate of solubilization of outer doublet microtubules during incubation at 37°C. Therefore, the colchicine binding site on tubulin is blocked (not available to bind colchicine) when the tubulin is in the assembled outer doublet microtubules.  相似文献   

6.
Poly(L-lysine) was found to enhance colchicine binding activity of brain tubulin to a several folds. Bases of biological interests that were tested and found to be inactive were spermine, spermidine and even L-lysine. Part of this enhance binding is due to the increase in the affinity of colchicine-tubulin interaction in the presence of poly(L-lysine). Moreover, poly(L-lysine) stabilized the colchicine binding site of tubulin against thermal denaturation.  相似文献   

7.
The synthesis of a fluorescent colchicine derivative permits the localization of colchicine-binding receptors in cells. Fluorescein colchicine (FC) was prepared by the addition of fluorescein isothiocyanate to deacetyl colchicine. The product, FC, was separated from the reactants by thin-layer chromatography (TLC). The purity of FC was demonstrated by TLC, UV spectral analysis, and analysis of the kinetics of photodecomposition. FC inhibited [3H] colchicine binding to purified brain tubulin. The biological activity of FC was compared to the activity of unlabeled colchicine on mitosis, motility, secretion, and myogenesis. The effects of FC were identical to those of unlabeled colchicine in all biological systems tested. The results demonstrate that FC may be substituted for colchicine in biological experiments without significant loss in specificity or effectiveness.  相似文献   

8.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

9.
Colchicine binding in the free-living nematode Caenorhabditis elegans   总被引:1,自引:0,他引:1  
The [3H]colchicine-binding activity of a crude supernatant of the free-living nematode Caenorhabditis elegans was resolved into a non-saturable component and a tubulin-specific component after partial purification of tubulin by polylysine affinity chromatography. The two fractions displayed opposing thermal dependencies of [3H]colchicine binding, with non-saturable binding increasing, and tubulin binding decreasing, at 4 degrees C. Binding of [3H]colchicine to C.elegans tubulin at 37 degrees C is a pseudo-first-order rate process with a long equilibration time. The affinity of C. elegans tubulin for [3H]colchicine is relatively low (Ka = 1.7 x 10(5) M(-1)) and is characteristic of the colchicine binding affinities observed for tubulins derived from parasitic nematodes. [3H]Colchicine binding to C. elegans tubulin was inhibited by unlabelled colchicine, podophyllotoxin and mebendazole, and was enhanced by vinblastine. The inhibition of [3H]colchicine binding by mebendazole was 10-fold greater for C. elegans tubulin than for ovine brain tubulin. The inhibition of [3H]colchicine binding to C. elegans tubulin by mebendazole is consistent with the recognised anthelmintic action of the benzimidazole carbamates. These data indicate that C. elegans is a useful model for examining the interactions between microtubule inhibitors and the colchicine binding site of nematode tubulin.  相似文献   

10.
The tubulins of Antarctic fishes possess adaptations that favor microtubule formation at low body temperatures (Detrich et al.: Biochemistry 28:10085-10093, 1989). To determine whether some of these adaptations may be present in a domain of tubulin that participates directly or indirectly in lateral contact between microtubule protofilaments, we have examined the energetics of the binding of colchicine, a drug thought to bind to such a site, to pure brain tubulins from an Antarctic fish (Notothenia gibberifrons) and from a mammal (the cow, Bos taurus). At temperatures between 0 and 20 degrees C, the affinity constants for colchicine binding to the fish tubulin were slightly smaller (1.5-2.6-fold) than those for bovine tubulin. van't Hoff analysis showed that the standard enthalpy changes for colchicine binding to the two tubulins were comparable (delta H degrees = +10.6 and +7.4 kcal mol-1 for piscine and bovine tubulins, respectively), as were the standard entropy changes (delta S degrees = +61.3 eu for N. gibberifrons tubulin, +51.2 eu for bovine tubulin). At saturating concentrations of the ligand, the maximal binding stoichiometry for each tubulin was approximately 1 mol colchicine/mol tubulin dimer. The data indicate that the colchicine-binding sites of the two tubulins are similar, but probably not identical, in structure. The apparent absence of major structural modifications at the colchicine site suggests that this region of tubulin is not involved in functional adaptation for low-temperature polymerization. Rather, the colchicine site of tubulin may have been conserved evolutionarily to serve in vivo as a receptor for endogenous molecules (i.e., "colchicine-like" molecules or MAPs) that regulate microtubule assembly.  相似文献   

11.
Membrane-bound tubulin in brain and thyroid tissue.   总被引:26,自引:0,他引:26  
Brain and thyroid tissue contain membrane-bound colchicine-binding activity that is not due to contamination by loosely bound cytoplasmic tubulin. This activity can be solubilized to the extent of 80 to 90% by treatment with 0.2% Nonidet P-40 with retention of colchicine binding. Extracts so obtained contain a prominent protein band in disc gel electrophoresis that co-migrates with tubulin. Membranes, and the solubilized protein therefrom, exhibit ligand binding properties like tubulin; for colchicine the KA is approximately 1 X 10(6) M-1 in brain and approximately 0.6 X 10(6) M-1 in thyroid; for vinblastine the KA is approximately 8 X 10(6) M-1 for both tissues; and for podophyllotoxin the Ki is approximately 2 X 10(-6) M for both tissues. Displacement by analogues of colchicine is of the same order as for soluble tubulin. Although membrane-bound colchicine-binding activity shows greater thermal stability and a higher optimum binding temperature (54 degrees versus 37 degrees) than soluble tubulin, this appears to be the result of the membrane environment since the solubilized binding activity behaves like the soluble tubulin. Antibody against soluble brain tubulin reacts with membranes and solubulized colchicine-binding activity from both brain and thyroid gland. We conclude that brain and thyroid membrane preparations contain firmly bound tubulin or a very similar protein.  相似文献   

12.
The ability of mebendazole and fenbendazole to bind to tubulin in cytosolic fractions from 8-day Ascaris suum embryos was determined by inhibition studies with [3H]colchicine. Colchicine binding in the presence of 1·10?6 M mebendazole was completely inhibited during a 6 h incubation period at 37°C. Inhibition of colchicine binding to A. suum embryonic tubulin by mebendazole and fenbendazole appeared to be noncompetative. The inhibition constants of mebendazole and fenbendazole for A. suum embryonic tubulin were 1.9·10?8 M and 6.5·10?8 M, respectively. Mebendazole and fenbendazole appeared to be competitive inhibitors of colchicine binding to bovine brain tubulin. The inhibition constants of mebendazole and fenbendazole for bovine brain tubulin were 7.3·10?6 M and 1.7·10?5 M, respectively. These values are 250–400 times greater than the inhibition constants of fenbendazole and mebendazole for A. suum embryonic tubulin. Differential binding affinities between nematode tubulin and mammalian tubulin for benzimidazoles may explain the selective toxicity. The importance of tubulin as a receptor for anthelmintic benzimidazoles in animal parasitic nematodes is discussed.  相似文献   

13.
A tight association between Chlamydomonas alpha-tubulin acetyltransferase (TAT) and flagellar axonemes, and the cytoplasmic localization of both tubulin deacetylase (TDA) and an inhibitor of tubulin acetylation have been demonstrated by the use of calf brain tubulin as substrate for these enzymes. A major axonemal TAT of 130 kD has been solubilized by high salt treatment, purified, and characterized. Using the Chlamydomonas TAT with brain tubulin as substrate, we have studied the effects of acetylation on the assembly and disassembly of microtubules in vitro. We also determined the relative rates of acetylation of tubulin dimers and polymers. The acetylation does not significantly affect the temperature-dependent polymerization or depolymerization of tubulin in vitro. Furthermore, polymerization of tubulin is not a prerequisite for the acetylation, although the polymer is a better substrate for TAT than the dimer. The acetylation is sensitive to calcium ions which completely inhibit the acetylation of both dimers and polymers of tubulin. Acetylation of the dimer is not inhibited by colchicine; the effect of colchicine on acetylation of the polymer can be explained by its depolymerizing effect on the polymer.  相似文献   

14.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would be consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

15.
The effect of dapsone on assembly-disassembly process of bovine brain tubulin was examined. The drug was found to readily bind tubulin dimer and that in its presence colchicine binding to tubulin was enhanced. Although dapsone associated with tubulin at a site other than the colchicine binding site, distinct inhibition of microtubule assembly was detected.  相似文献   

16.
Characterization and in vitro polymerization of Tetrahymena tubulin   总被引:6,自引:0,他引:6  
Tetrahymena tubulin was purified from the cell extract using DEAE-Sephadex A-50 ion-exchanger and ammonium sulfate precipitation. About 2.2% of the total protein in the 20,000 X g supernatant was recovered as DEAE-Sephadex-purified tubulin fraction. Applying the temperature-dependent polymerization-depolymerization method to this fraction in the presence of Tetrahymena outer fibers as a seed, almost pure tubulin was obtained. Tetrahymena tubulin dimer showed different behavior on SDS-polyacrylamide gels from porcine brain tubulin, and showed very low affinity for colchicine, amounting to about one-twentieth of the binding to porcine brain tubulin. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragment induced polymerization as demonstrated by viscometric measurements, but the reconstituted microtubules were very unstable in the absence of glycerol. Microtubule-depolymerizing agents such as Ca2+ ions, low temperature, or colchicine all inhibited in vitro polymerization. Although Tetrahymena tubulin purified by the polymerization-depolymerization method could copolymerize with porcine brain microtubules, the DEAE-Sephadex-purified tubulin fraction suppressed the initial rate of porcine brain microtubule assembly in vitro. There seemed to be no differences between cytoplasmic tubulin and outer fiber tubulin in colchicine binding activity or SDS-gel electrophoretic behavior, or between the fine structure of both reconstituted microtubules observed by electron microscopy.  相似文献   

17.
In mammalian brain, beta-tubulin occurs as a mixture of four isotypes designated as types I, II, III, and IV. It has been speculated in recent years that the different tubulin isotypes may confer functional diversity to microtubules. In an effort to investigate whether different tubulin isotypes differ in their functional properties we have studied the colchicine binding kinetics of bovine brain tubulin upon removal of the beta III isotype. We found that the removal of the beta III isotype alters the binding kinetics from biphasic to monophasic with the disappearance of the slow phase. The kinetics become biphasic with the reappearance of the slow phase when the beta III-depleted tubulin was mixed with the beta III fraction eluted from the affinity column with 0.5 M NaCl. The analysis of the kinetic data reveals that the tubulin dimers containing beta III bind colchicine at an on-rate constant of 35 M-1 s-1 while those lacking beta III bind at 182 M-1 s-1. Our results strongly suggest that the beta-subunit plays a very important role in the interaction of tubulin with colchicine.  相似文献   

18.
The tubulin-colchicine binding reaction appears to involve a number of intermediate steps beginning with rapid formation of a transient preequilibrium complex that is followed by one or more slow steps in which conformational changes in tubulin and colchicine lead to formation of a poorly reversible final-state complex. In the present study, we investigated the relative ability of unliganded colchicine and preformed final-stage tubulin-colchicine complex to incorporate at microtubule ends and to inhibit addition of tubulin at the net assembly ends of bovine brain microtubules in vitro. Addition of 0.1 microM final-stage tubulin-colchicine complex to suspensions of microtubules at polymer-mass steady-state resulted in rapid incorporation of one to two molecules of tubulin-colchicine complex per microtubule net assembly end concomitant with approximately 50-60% inhibition of tubulin addition. Incorporation of colchicine-tubulin complex continued slowly with time, without significant additional change in the rate of tubulin addition. In contrast, addition of unliganded colchicine to microtubule suspensions resulted in incorporation of small numbers of colchicine molecules at microtubule ends and inhibition of tubulin addition only after periods of time that varied from several minutes to approximately 20 min depending upon the concentration of colchicine. Inhibition of tubulin addition beginning with unliganded colchicine increased slowly with time, concomitant with increases in the concentration of final-state tubulin-colchicine complex and the amount of colchicine bound per microtubule end. The results indicate that inhibition of tubulin incorporation at microtubule ends is caused by colchicine-liganded tubulin in the form of a final-state complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The product of the incorporation of [14C]tyrosine as single unit into a protein of the soluble fraction of rat brain homogenate was purified by following a procedure used to purify tubulin. Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the purified material showed a single protein band containing all the radioactivity. Purification data indicate that this protein accounts for 10.2% of the total protein of the supernatant fraction. This is in good agreement with the amount found for tubulin by the [3H]colchicine-binding method (10.5% of the total protein). The incorporated [14C]-tyrosine was found in the alpha-subunit of tubulin. Protein labelled with [3H]colchicine and [14C]tyrosine was precipatated with vinblastine sulphate and the radioactivity of 3H and that of 14C were quantitatively recovered in the precipitate (98%). Sodium dodecylsulphate-polyacrylamide gel electrophoresis of the vinblastine precipitate showed that the 14C radioactivity moved with the tubulin band. Results obtained in experiments with phenylalanine and 3,4-dihydroxyphenylalanine were identical to those obtained for tyrosine. Bineing of colchicine did not interfere with the incorporation of tyrosine. About 30% of tubulin from rat brain supernatant fraction can incorporate tyrosine as single unit.  相似文献   

20.
Microtubules from the cow adrenal cortex and brain were purified by three cycles of the temperature-dependent polymerization-depolymerization procedure. Whereas tubulin comprised approximately 8--10% of soluble brain protein, it comprised only 0.5-1.0% of the soluble adrenocortical protein. The partially purified tubulin from both sources gave similar results in the following studies: (1) [3H]colchicine binding examined by Scatchard analysis revealed an apparent Ka of 1 . 10(6) M-1 and a colchicine/tubulin molar binding ratio of 0.4-0.6; (2) tyrosylation studies using a specific tubulin-tyrosine ligase (which adds a tyrosine residue to the C-terminal glutamate or glutamine of the alpha-chain) in conjunction with carboxypeptidase A (which recovers the tyrosine) and (3) amino acid analysis. Examination of protein bands, in addition to the tubulin doublet of 55 000 molecular weight, on sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a difference between the two tubulin preparations. The adrenocortical preparation had protein bands corresponding to apparent molecular weight of 36 000, 60 000, and 68 000. In contrast the brain preparation had only proteins of molecular weights greater than 200 000 (these bands were absent in all adrenal preparations). It would thus appear that if proteins which copurify with tubulin through repeated cycles of polymerization-depolymerization play a role in either microtubule formation or function there is a distinct difference between neural and non-neural tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号