首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The domestication of both diploid and tetraploid cotton species was carried out for fiber utilization. To understand the origin and domestication of fibers, 18 genes related to fiber development were individually cloned and sequenced from 22 different cotton species. Their structures, phylogenetic relationship and molecular evolution were further studied. In the orthologous and homeologous loci of the 18 genes, the sequence and structure of 72.22% were conserved and 27.78% were diverse. Tree topologies constructed based on the combined sequences showed that all 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenomes independently evolved in the allopolyploid after polyploid formation, and Gossypium raimondii had the closest relationship with all allotetraploids of D-subgenomes. The molecular evolutionary rates revealed approximately equivalent rates among different D-genome species, and purifying selection acted on all genes in the wild D-genome species. Among orthologs and homeologs, the D-subgenomes had higher evolutionary rates than the A-subgenomes in tetraploid cotton species, and the cultivars had higher evolutionary rates than either the semi-domesticated or wild species. Our study revealed that human domestication altered the molecular evolutionary pattern of genes related to fiber development, and Gossypium hirsutum endured greater selective pressures than Gossypium barbadense during the domestication process.  相似文献   

3.
Liu D  Tu L  Wang L  Li Y  Zhu L  Zhang X 《Plant cell reports》2008,27(8):1385-1394
Cotton fiber (Gossypium hirsutum L. and G. barbadense L.) is a good model for studies of plant cell elongation and cell wall biogenesis. Aquaporins are ancient membrane channel proteins that facilitate the permeation of water across biological membranes. We studied GhPIP1-2, encoding plasma membrane intrinsic protein, and GhgammaTIP1, encoding tonoplast intrinsic protein, during cotton fiber development. The full-length cDNAs of GhPIP1-2 and GhgammaTIP1 were obtained through 5' RACE. The deduced amino acid sequences of GhPIP1-2 and GhgammaTIP1 share high sequence identity with aquaporins from diverse plant species. Phylogenetic analysis of GhPIP1-2 and GhgammaTIP1 with other plant aquaporins showed that GhPIP1-2 belongs to the PIP1 group of the PIP subfamily and GhgammaTIP1 belongs to the gammaTIP group of the TIP subfamily. GhPIP1-2 and GhgammaTIP1 contain three and two introns, respectively. Genomic Southern blot analysis indicated that GhPIP1-2 and GhgammaTIP1 have several copies and multiple homologous genes in allotetraploid cotton. Northern blot analysis with gene-specific probes and real-time PCR demonstrated that GhPIP1-2 and GhgammaTIP1 are predominantly expressed during cotton fiber elongation, with the highest expression levels at 5 days post-anthesis. Moreover, expression patterns of the two genes in G. hirsutum and G. barbadense are similar, whereas the expression levels in G. barbadense are much lower than that in G. hirsutum. The high and preferential expression of GhPIP1-2 and GhgammaTIP1 during fiber cell elongation suggests that they may play important roles in supporting the rapid influx of water into vacuoles during cotton fiber cell expansion.  相似文献   

4.
四个栽培棉种间的杂种F1细胞遗传学与亲缘关系研究   总被引:2,自引:0,他引:2  
以棉属四个栽培棉种进行种间杂交,产生(亚洲棉×草棉)和(陆地棉×海岛棉)2个二元杂种F1及其[(亚洲棉×草棉)×(陆地棉×海岛棉)]四元杂种F1,观察和测定4个栽培棉种及其2个二元杂种F1和四元杂种F1的花粉母细胞(PMC)减数分裂的染色体行为及其花粉生活力,以研究4个栽培棉种间的亲缘关系和进化关系。结果表明,二元杂种(亚洲棉×草棉)F1的PMC减数分裂中期Ⅰ出现一个四体环,其余为二价体,染色体构型为2n=26=11Ⅱ 1Ⅳ;花粉生活力的测定表明,(亚洲棉×草棉)F1可育型花粉为50.71%,表现为典型的配子半不育特性,说明两个二倍体棉种间发生一次染色体易位。(陆地棉×海岛棉)F1以26个二价体细胞为主,但有少量的单价体、三价体以及四价体,染色体构型为2n=52=0.78Ⅰ 22.24Ⅱ 0.94Ⅲ 0.98Ⅳ。花粉生活力的测定表明,(陆地棉×海岛棉)F1可育型花粉为54.84%,可见2个四倍体棉种间亲缘关系较近,二者之间仅发生了染色体的易位或倒位。而由4个栽培种合成的四元杂种F1,其减数分裂异常,染色体丢失现象普遍,部分染色体不能联会配对,以单价体的形式存在,并出现三价体、四价体、五价体等多价体,染色体构型为2n=52=5.45Ⅰ 14.41Ⅱ 2.44Ⅲ 1.59Ⅳ 0.63Ⅴ 0.15Ⅵ,其可育花粉为6.87%。研究结果表明了4种栽培棉种之间的亲缘关系相对较近,可以通过遗传重组产生综合有4个栽培棉种性状的新种质。  相似文献   

5.
Chen X  Guo W  Liu B  Zhang Y  Song X  Cheng Y  Zhang L  Zhang T 《PloS one》2012,7(1):e30056
Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities.  相似文献   

6.
棉花种质资源光子性状的遗传分析   总被引:1,自引:0,他引:1  
Sun YL  Jia YH  He SP  Zhou ZL  Sun JL  Pang BY  Du XM 《遗传》2012,34(8):1073-1078
文章利用来源于不同国家和地区的102份陆地棉材料和85份海岛棉材料分别与陆地棉遗传标准系TM-1和海岛棉毛子品种新海13号杂交,得到陆地棉和海岛棉两种F1群体,同时从陆地棉F1群体中随机选取呈隐性性状的材料"库光子"、"SA65"和"陆无絮"后代,配制3个F2分离群体,用于进一步研究陆地棉和海岛棉光子性状遗传特征。结果表明:(1)同一材料种植于不同生态区,其种子短绒多少存在变化,新疆和海南要少于安阳,说明棉花短绒多少和生态环境有关系;(2)陆地棉光子材料中26份(25.49%)呈显性遗传,8份(7.84%)呈不完全显性遗传,22(21.57%)份呈隐性遗传;海岛棉光子材料中5份(5.88%)呈显性遗传,16份(18.82%)呈部分显性遗传,9份(10.59%)呈隐性遗传。其余为隐性性状或显性性状不明显材料和毛子材料;(3)库光子的光子性状由两对隐性等位基因控制,并且有互补效应;陆无絮的光子性状由两对隐性等位基因控制,基因间呈积加作用;SA65的光子性状由单隐性基因控制。大量光子材料的初步鉴定为深入研究棉花纤维发育和育种利用提供了基础材料和理论依据。  相似文献   

7.
棉花是世界上种植最广泛的纤维作物,随着人们生活水平的提高和棉纺织工业的发展,对棉花的纤维品质提出了更高的要求.本研究利用渐渗系ZP171为亲本,该材料以陆地棉中棉所8号为遗传背景携带了纤维品质优异的海岛棉Pima90-53片段,构建遗传群体并选育优异种质材料.基于群体在多环境下的纤维品质鉴定结果,发现纤维长度和比强度与...  相似文献   

8.
Transgenic cotton resistant to herbicide bialaphos   总被引:12,自引:0,他引:12  
Resistance to bialaphos, a non-selective herbicide, was intro duced into cotton through genetic engineering. A gene encoding phosphinothric in acetyltransferase (bar) from Streptomyces hygroscopicus was inserted into elite varieties of cotton through particle bombardment. Based on the marker gene, -glucuronidase (gus) expression, a total of 18 Pima (Gossypium barbadense), 45 DP50 (G. hirsutum L.), 20 Coker 312 (G. hirsutum) and 2 El Dorado (G. hirsutum) transgenic plants were recovered. Integration of the bar gene into cotton genomic DNA was confirmed by Southern blot analysis and gene expression was confirmed by northern blot and enzyme assays. Herbicide (Basta®) tolerance up to 15 000 ppm was demonstrated in greenhouse trials. The newly introduced herbicide tolerance trait is inherited in a Mendelian fashion in the progenies of germline transformants. This study demonstrates the potential for particle bombardment to introduce commerically important genes directly into elite varieties of cotton. This mode of gene transfer can expedite the introduction of transgenic cotton products into world markets  相似文献   

9.
10.
11.
建国以来我国棉花品种遗传基础的分子标记分析   总被引:21,自引:2,他引:19  
采用MPD分子标记、遗传距离和聚类分析方法,研究建国以来我国有代表性的166个棉花主栽品种(或品系)的遗传多样性。41个RAPD标记Nei’s遗传距离(GD)与两组不同来源实验数据的表型性状欧氏距离(UD)间相关系数分别为0.6445(n=1770)和0.7078(n=7140),表明RAPD可以揭示棉花品种间遗传差异。通过对不同棉种、不同品种类型、不同时期、不同种植区域和不同来源的棉花品种(系)遗传差异的比较,探讨我国棉花品种的遗传基础。各层次上遗传差异的比较表明:在我国主栽棉花品种中,海岛棉品种遗传基础窄于陆地棉品种;我国自育陆地棉品种的遗传基础窄于国外引进品种;杂交陆地棉品种的遗传基础窄于常规品种;上世纪80年代以后陆地棉品种遗传基础窄于70年代品种;长江棉区品种遗传基础窄于黄淮棉区品种,西北内陆棉区品种窄于长江棉区品种。启示我们如何在我国棉花育种的全局和不同层面上把握和制定拓宽棉花育种遗传基础的策略和手段,并为进步深入探讨建国以来我国棉花品种遗传改良规律打下基础。  相似文献   

12.
Leaf pubescence in cotton have a potential for insect pest management. Varying degrees of leaf trichome density in Gossypium species and cultivars have been associated to a series of five genes, referred to as t(1)-t(5). We used two segregating interspecific G. hirsutum x G. barbadense backcross populations developed in our laboratory to assess qualitatively and quantitatively leaf and stem pubescence. QTL analyses were performed using simple and composite interval mapping. Based on both types of measurements and under both types of QTL analyses, nine QTLs met permutation-based thresholds. The nine QTLs mapped to four different chromosome regions. Highest LOD values corresponded to the QTLs detected on c6 (four colocalized QTLs) and on D03 (two QTLs) for which the higher pubescence in the progeny derived from the pubescent G. hirsutum parent alleles. Conversely, on c17 (one QTL) and A01 (two QTLs), the G. hirsutum parental alleles affected negatively pubescence. These results combined with another published study confirm (1) the location in a center region of chromosome 6 of the t(1) locus as a major locus/gene determining leaf pubescence, and (2) additional genes located on seven additional chromosomes have been shown to impart trichome density either positively or negatively. The existence of a high density of PCR-based loci in most of the regions identified as harboring leaf pubescence QTLs, particularly that on chromosome 6, will facilitate future efforts for map-based cloning.  相似文献   

13.
14.
陆海BC_4F_3和BC_4F_(3:4)代换系纤维产量与品质的表型评价   总被引:1,自引:0,他引:1  
对陆海BC4F3和BC4F3:4代换系群体的纤维产量与品质的表型性状进行初步评价分析,结果表明,群体代换系各性状平均值与轮回亲本中棉所45相近,但群体内部个体间仍存在丰富的遗传变异,其中不乏超越中棉所45的材料。从中筛选20个纤维品质突出单株(株行),2年的上半部平均长度高于30.00 mm,断裂比强度高于31.0 c N/tex,表现较好的一致性和稳定性,为进一步棉花纤维品质育种提供了选择材料。  相似文献   

15.
Because the genetic basis of current upland cotton cultivars is narrow, exploring new germplasm resources and discovering novel alleles relevant to important agronomic traits have become two of the most important themes in the field of cotton research. In this study, G. darwinii Watt, a wild cotton species, was crossed with four upland cotton cultivars with desirable traits. A total of 105 introgression lines (ILs) were successfully obtained. By using 310 mapped SSRs evenly distributed across the interspecific linkage map of G. hirsutum?×?G. barbadense, these 105 ILs and their corresponding parents were analyzed. A total of 278 polymorphic loci were detected among the 105 ILs, and the average length of introgression segments accumulated to 333.5?cM, accounting for 6.7?% of the whole genome. These lines included many variations. However, high similarity coefficients existed between lines, even between those derived from different parents. Finally, all the ILs and their upland cotton parents were used for association mapping of fiber quality in three environments. A total of 40 SSRs were found to be associated with five fiber quality indexes (P?相似文献   

16.
Genetic mapping provides a powerful tool for quantitative trait loci (QTL) analysis at the molecular level. A simple sequence repeat (SSR) genetic map containing 590 markers and a BCI population from two cultivated tetraploid cotton (Gossypium hirsutum L.) cultivars, namely TM-1 and Hai 7124 (G. barbadense L.), were used to map and analyze QTL using the composite interval mapping (CIM) method. Thirty one QTLs, 10 for lobe length, 13 for lobe width, six for lobe angle, and two for leaf chlorophyll content, were detected on 15 chromosomes or linkage groups at logarithm of odds (LOD)≥2.0, of which 15 were found for leaf morphology at LOD≥3.0. The genetic effects of the QTL were estimated. These results are fundamental for marker-assisted selection (MAS) of these traits in tetraploid cotton breeding.  相似文献   

17.
EST derived PCR-based markers for functional gene homologues in cotton.   总被引:7,自引:0,他引:7  
We investigated the utility of the Gossypium arboreum EST sequences in the GenBank database for developing PCR-based markers targeting known-function genes in cultivated tetraploid cottons, G. hirsutum and G. barbadense. Four hundred sixty-five randomly selected ESTs from this library were subjected to BLASTn search against all GenBank databases, of which putative function was assigned to 93 ESTs based on high nucleotide homology to previously studied genes. PCR primers were synthesized for 89 of the known-function ESTs. A total of 57 primer pairs amplified G. arboreum genomic DNA, but only 39 amplified in G. hirsutum and G. barbadense, suggesting that sequence divergence may be a factor causing non-amplification for some sites. DNA sequence analysis showed that most primer pairs were targeting the expected homologous loci. While the amplified products that were of larger size than the corresponding EST sequences contain introns, the primer pairs with a smaller amplicon than predicted from the flanking EST sequences did not amplify the expected orthologous gene sequences. Among the 39 primer pairs that amplified tetraploid cotton DNA, 3 detected amplicon size polymorphisms and 10 detected polymorphisms after digestion with one of six restriction enzymes. Ten of the polymorphic loci were subsequently mapped to an anchor RFLP map. Digestion of PCR-amplified sequences offers one means by which cotton genes can be mapped to their chromosomal locations more quickly and economically than by RFLP analysis.  相似文献   

18.
Sucrose synthase (Sus) is a key enzyme in plant sucrose metabolism. In cotton, Sus (EC 2.4.1.13) is the main enzyme that degrades sucrose imported into cotton fibers from the phloem of the seed coat. This study demonstrated that the genomes of Gossypium arboreum L., G. raimondii Ulbr., and G. hirsutum L., contained 8, 8, and 15 Sus genes, respectively. Their structural organizations, phylogenetic relationships, and expression profiles were characterized. Comparisons of genomic and coding sequences identified multiple introns, the number and positions of which were highly conserved between diploid and allotetraploid cotton species. Most of the phylogenetic clades contained sequences from all three species, suggesting that the Sus genes of tetraploid G. hirsutum derived from those of its diploid ancestors. One Sus group (Sus I) underwent expansion during cotton evolution. Expression analyses indicated that most Sus genes were differentially expressed in various tissues and had development-dependent expression profiles in cotton fiber cells. Members of the same orthologous group had very similar expression patterns in all three species. These results provide new insights into the evolution of the cotton Sus gene family, and insight into its members' physiological functions during fiber growth and development.  相似文献   

19.
Reference electrophoretic spectra that allow compiling electrophoretic formulas of certain cotton species and varieties were obtained on the basis of analysis of the electrophoretic spectrum of water-soluble and barely soluble proteins of seeds of diploid cotton species of genomic group A (Gossypium arboretum var. indicum, G. arboreum ssp. obtusifolum, G. herbaceum ssp. africanum, and G. herbaceum Harga), group C (G. australe, G. bickii, G. nelsone, and G. sturtianum), group D (G. davidsonii. G. harknessii. G. klotzschianum, G. raimondii, G. thurberi, and G. trilobum), and amphidiploid species of group AD (G. mustelinum, G. hirsutum ssp. palmeri, G. tricuspidatum Bagota, G. tricuspidatum Mari Galanta, G. barbadense L., and G. hirsutum L.).  相似文献   

20.
《遗传学报》2021,48(6):473-484
Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton(cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号