首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial characterizations of live-Salmonella-containing early (LSEP) and late phagosomes (LSLP) in macrophages show that both phagosomes retain Rab5 and EEA1. In addition, LSEP specifically contain transferrin receptor whereas LSLP possess relatively more rabaptin-5. In contrast to LSLP, late-Salmonella-containing vacuoles in epithelial cells show significantly reduced levels of Rab5 and EEA1. Subsequent results demonstrate that both phagosomes efficiently fuse with early endosomes (EE). In contrast to LSEP, fusion between LSLP and EE is insensitive to ATPγS treatment. Furthermore, LSLP fuses with EE in absence of NEM-sensitive fusion factor (NSF) as well as in the presence of NSF:D1EQ mutant demonstrating that LSLP fusion with EE is NSF independent.  相似文献   

2.
The precise function of the yolk platelets of sea urchin embryos during early development is unknown. We have shown previously that the chemical composition of the yolk platelets remains unchanged in terms of phospholipid, triglyceride, hexose, sialic acid, RNA, and total protein content after fertilization and early development. However, the platelet is not entirely static because the major 160-kD yolk glycoprotein YP-160 undergoes limited, step-wise proteolytic cleavage during early development. Based on previous studies by us and others, it has been postulated that yolk platelets become acidified during development, leading to the activation of a cathepsin B-like yolk proteinase that is believed to be responsible for the degradation of the major yolk glycoprotein. To investigate this possibility, we studied the effect of addition of chloroquine, which prevents acidification of lysosomes. Consistent with the postulated requirement for acidification, it was found that chloroquine blocked YP-160 breakdown but had no effect on embryonic development. To directly test the possibility that acidification of the yolk platelets over the course of development temporally correlated with YP-160 proteolysis, we added 3-(2,4-dinitroanilo)-3-amino-N-methyldipropylamine (DAMP) to eggs or embryos. This compound localizes to acidic organelles and can be detected in these organelles by EM. The results of these studies revealed that yolk platelets did, in fact, become transiently acidified during development. This acidification occurred at the same time as yolk protein proteolysis, i.e., at 6 h after fertilization (64-cell stage) in Strongylocentrotus purpuratus and at 48 h after fertilization (late gastrula) in L. pictus. Furthermore, the pH value at the point of maximal acidification of the yolk platelets in vivo was equal to the pH optimum of the enzyme measured in vitro, indicating that this acidification is sufficient to activate the enzyme. For both S. purpuratus and Lytechinus pictus, the observed decrease in the pH was approximately 0.8 U, from 7.0 to 6.2. The trypsin inhibitor benzamidine was found to inhibit the yolk proteinase in vivo. By virtue of the fact that this inhibitor was reversible we established that the activity of the yolk proteinase is developmentally regulated even though the enzyme is present throughout the course of development. These findings indicate that acidification of yolk platelets is a developmentally regulated process that is a prerequisite to initiation of the catabolism of the major yolk glycoprotein.  相似文献   

3.
The yolk platelets from Rhodnius prolixus, a blood-sucking bug, are composed mostly of vitellin and here are shown to contain at least two hydrolytic enzymes, a phosphatase and a cathepsin D-like proteinase. Both the proteinase and the phosphatase have an acid pH optimum. No hydrolytic activity was observed under alkaline or neutral conditions. Among several proteinase inhibitors tested, only pepstatin could abolish vitellin breakdown in vitro. The proteinase appears to be bound to the yolk platelet membranes. The phosphatase activity, using p-nitrophenyl phosphate as substrate, was enhanced after disruption of the platelet membrane by Triton X-100. This activity could be inhibited by tartrate but not by p-cloromercuribenzoate.  相似文献   

4.
Syntaxins are target‐SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepAPep12, present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc‐18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepAPep12 action. The syntaxin TlgBTlg2 localizing to the TGN appears to mediate retrograde traffic connecting post‐Golgi (sorting) endosomes with the TGN. TlgBTlg2 is dispensable for growth but becomes essential if the early Golgi syntaxin SedVSed5 is compromised, showing that the Golgi can function with a single syntaxin, SedVSed5. Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedVSed5 playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post‐Golgi endosome with the Golgi, besides more conventional intra‐Golgi roles.  相似文献   

5.
Summary— The plasma membrane protein pattern of Rana ridibunda embryos subjected to lithium (Li) treatment at various stages of development was examined by two-dimensional gel electrophoresis. Differences were observed at the neurula stage not only as compared to controls but among lithium-treated embryos as well. Of particular interest was the presence of proteins, specific for the gastrula stage, in lithium-treated embryos. The results are discussed in relation to the well-known effect of lithium on amphibian morphogenesis.  相似文献   

6.
Ramanathan HN  Ye Y 《Cell research》2012,22(2):346-359
The AAA (ATPase-associated with various cellular activities) ATPase p97 acts on diverse substrate proteins to partake in various cellular processes such as membrane fusion and endoplasmic reticulum-associated degradation (ERAD). In membrane fusion, p97 is thought to function in analogy to the related ATPase NSF (N-ethylmaleimide-sensitive fusion protein), which promotes membrane fusion by disassembling a SNARE complex. In ERAD, p97 dislocates misfolded proteins from the ER membrane to facilitate their turnover by the proteasome. Here, we identify a novel function of p97 in endocytic trafficking by establishing the early endosomal autoantigen 1 (EEA1) as a new p97 substrate. We demonstrate that a fraction of p97 is localized to the early endosome membrane, where it binds EEA1 via the N-terminal C2H2 zinc finger domain. Inhibition of p97 either by siRNA or a pharmacological inhibitor results in clustering and enlargement of early endosomes, which is associated with an altered trafficking pattern for an endocytic cargo. Mechanistically, we show that p97 inhibition causes increased EEA1 self-association at the endosome membrane. We propose that p97 may regulate the size of early endosomes by governing the oligomeric state of EEA1.  相似文献   

7.
The retromer is an evolutionarily conserved coat complex that consists of Vps26, Vps29, Vps35 and a heterodimer of sorting nexin (Snx) proteins in yeast. Retromer mediates the recycling of transmembrane proteins from endosomes to the trans‐Golgi network, including receptors that are essential for the delivery of hydrolytic enzymes to lysosomes. Besides its function in lysosomal enzyme receptor recycling, involvement of retromer has also been proposed in a variety of vesicular trafficking events, including early steps of autophagy and endocytosis. Here we show that the late stages of autophagy and endocytosis are impaired in Vps26 and Vps35 deficient Drosophila larval fat body cells, but formation of autophagosomes and endosomes is not compromised. Accumulation of aberrant autolysosomes and amphisomes in the absence of retromer function appears to be the consequence of decreased degradative capacity, as they contain undigested cytoplasmic material. Accordingly, we show that retromer is required for proper cathepsin L trafficking mainly independent of LERP, the Drosophila homolog of the cation‐independent mannose 6‐phosphate receptor. Finally, we find that Snx3 and Snx6 are also required for proper autolysosomal degradation in Drosophila larval fat body cells.   相似文献   

8.
Artificially fertilized eggs and yolk-sac larvae of a freshwater tropical/subtropical fish Clarias gariepinus receiving no external food were incubated at 22, 25 and 28° C until full yolk resorption. Developmental time, size and matter composition (CHNS-O Analyzer and ashing) were assessed at egg fertilization, hatching and yolk resorption; respiration was measured every 4–5 h. The course of acceleration of C. gariepinus embryonic developmental rate with temperature ( Q10 dev) was compared over the temperature range to those of Cyprinus carpio and Oncorhynchus mykiss ; they differed greatly, but were similar when compared on the basis of effective temperatures specific to each fish. Specific growth rates for energy (88, 150 and 183% per day at 22,25 and 28° C, respectively) as well as the conversion efficiencies of egg energy (64, 71 and 68%, respectively) and protein (71, 78 and 76%, respectively) in C. gariepinus larval tissues were higher than those known for the endogenous feeding period of coldwater and temperate fish species. In C. gariepinus at the end of yolk resorption, the carbon percentage and caloric values of dry weight, size (in terms of dry matter, minerals, protein and energy per larva) and transformation efficiencies were lowest at 22° C, highest at 25° C and had slightly decreased at 28° C. A tentative mechanism which leads to the positive or negative response of body size to temperature over the viable temperature range is defined.  相似文献   

9.
The degradation of yolk granules during the development of Artemia was studied. The results obtained suggest that lysosomes are involved in the process. In homogenates of embryos and larvae at different stages of development, the distribution of 2 lysosomal markers, acid phosphatase and cathepsin B, was studied by sucrose isopycnic gradient centrifugation. Three peaks of enzyme activity of densities > 1.3 and around 1.25 and 1.18 were observed. As revealed by electron microscope analysis, the 3 peaks were found to be associated with increasingly degraded yolk structures which stained for acid phosphatase. The process can be mimicked in vitro by incubating isolated yolk granules and lysosomes. The enzyme activity levels of the 3 peaks observed during development presented an oscillatory pattern, suggesting that degradation of yolk is cyclic. Five cycles of degradation were observed during the initial 60 hr of development.  相似文献   

10.
The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.  相似文献   

11.
Circumferential and radial components of the yolk cell surface movements were measured in the loach embryos at the late blastula stage within 40–50 min after puncture or indentation by an obliquely directed glass rod. The yolk cell surface was preliminarily marked by coal particles. It was shown that even closely located regions of the surface differed markedly in the rate and direction of their movements. In the vicinity of puncture, the yolk cell surface at first contracted in both circumferential and radial directions and then widened, but did not reach the initial values. In more remote areas, this surface continued to contract in the circumferential direction, but was extended in the radial direction. The degree of its contraction along different radii was unequal. The reaction to oblique indentation was anisotropic: the closest area of the yolk cell surface, located along the direction of indentation, contracted in both circumferential and radial directions and formed a fold “leaking” onto the rod, while the opposite area contracted in the circumferential direction, but extended in the radial direction. A conclusion was drawn that the yolk cell surface is a multivariant mechanosensitive system. Its active responses to mechanical influences obey the same patterns as multicellular embryonic tissues.  相似文献   

12.
The mechanism by which plasma membrane proteins are transported to vacuoles for degradation has not been well characterized in plants. To clarify how plasma membrane proteins are degraded, we monitored the endocytotic pathway in tobacco suspension-cultured BY-2 cells with a fluorescent endocytosis marker, FM4-64. Because of the efficient and rapid delivery of endosomes to the vacuoles, endosomes were scarcely detectable. Interestingly, we found that E-64d, an inhibitor of papain family proteases, caused the accumulation of a large number of endosomes in the cells under the sucrose-starved condition. This result indicates that E-64d attenuates the fusion of endosomes with vacuoles. We identified two papain homologues, which are localized in the endosomes, with a biotinylated inhibitor. We designated them as endosome-localized papains (ENPs). Immunofluorescent analysis revealed that vacuolar sorting receptor, a marker of prevacuolar compartment (PVC), was localized in the endosomes. This result and their acidic nature show that the endosomes correspond to PVC. These results suggest that ENPs facilitate the final step in the vacuolar trafficking pathway under the sucrose-starved condition. We further examined the effects of E-64d on two transgenic Arabidopsis plants that constitutively express a fusion protein composed of green fluorescent protein (GFP) and a plasma membrane protein (GFP-PIP2a or GFP-LTI6b). GFP fluorescence was observed on the plasma membrane of root cells in these transgenic plants. Treatment with E-64d induced the accumulation of GFP-fluorescent endosomes and inhibited the degradation of these fusion proteins. No GFP fluorescence was observed in vacuoles in E-64d-treated transgenic plants. Taken together, these results suggest that endosomal proteases are required for the fusion of endosomes with vacuoles at the final step in the endocytotic pathway for degradation of plasma membrane proteins in plants.  相似文献   

13.
A key aspect of development in all metazoans is remodeling at the cellular level. During the development of gametes, remodeling occurs throughout the germ line. When Caenorhabditis elegans hermaphrodites become depleted of sperm after 4 days of adulthood, significant cellular remodeling occurs within the meiotically‐arrested oocytes, including the formation of ribonucleoprotein granules. Since major remodeling of the endoplasmic reticulum (ER) occurs in early embryos, we investigated the extent of ER remodeling in meiotically‐arrested oocytes. We found, using a combination of fluorescence reporters and transmission electron microscopy, that the ER in arrested oocytes accumulates in patches and sheets that are enriched at the cortex. Our findings suggest this remodeling is not due to simple displacement by large amounts of yolk that accumulate in arrested oocytes, and instead may be genetically regulated. We further identified the Ddx6 RNA helicase, CGH‐1, as a key regulator of ER in the germ line. In cgh‐1(tn691) oocytes, we detected cortical ER patches as well as aberrant granules of the RNA‐binding proteins, PAB‐1, MEX‐3, and CGH‐1. Taken together, our results suggest the possibility that the spatial organization of RNA binding proteins may regulate the translation of mRNAs associated with the ER that in turn, controls the organization of the ER in the adult germ line.  相似文献   

14.
The B cell antigen receptor (BCR) plays two central roles in B cell activation: to internalize antigens for processing and presentation, and to initiate signal transduction cascades that both promote B cells to enter the cell cycle and facilitate antigen processing by accelerating antigen transport. An early event in B cell activation is the association of BCR with the actin cytoskeleton, and an increase in cellular F-actin. Current evidence indicates that the organization of actin filaments changes in response to BCR-signaling, making actin filaments good candidates for regulation of BCR-antigen targeting. Here, we have analyzed the role of actin filaments in BCR-mediated antigen transport, using actin filament-disrupting reagents, cytochalasin D and latrunculin B, and an actin filament-stabilizing reagent, jasplakinolide. Perturbing actin filaments, either by disrupting or stabilizing them, blocked the movement of BCR from the plasma membrane to late endosomes/lysosomes. Cytochalasin D-treatment dramatically reduced the rate of internalization of BCR, and blocked the movement of the BCR from early endosomes to late endosomes/lysosomes, without affecting BCR-signaling. Thus, BCR-trafficking requires functional actin filaments for both internalization and movement to late endosomes/lysosomes, defining critical control points in BCR-antigen targeting.  相似文献   

15.
The participation of eicosanoids and second messengers in the regulation of endocytosis by the ovaries was investigated using the uptake of Rhodnius heme binding protein (RHBP) as an experimental model. The rate of RHBP uptake decreased up to 40% in the presence of BWA4C and NDGA, 5 and 12-lipoxygenase inhibitors, respectively, suggesting the involvement of lipoxygenase products in endocytosis regulation. Addition of Leukotriene B4 (LTB(4); one product of the 5 lipoxygenase pathway) increased in vitro the uptake of RHBP by 30%. The content of cAMP in the Rhodnius' ovaries were monitored after treatment with different eicosanoids and inhibitors of eicosanoids synthesis. The amount of cAMP decreased in the presence of indomethacin (by 50%), while treatment with PGE(2) induced an increase of 85% of this messenger in the ovaries. The presence of LTB(4) in the medium inhibited in 60% the content of cAMP in the ovaries, while BWA4C induced a 100% increase of this messenger in the ovaries. Addition of 1 microM DBcAMP in the medium resulted in a 30% decrease in the rate of RHBP uptake. Taken together, these data show that cyclooxygenase and lipoxygenase products participate in the control of protein internalization by modulation of cAMP levels.  相似文献   

16.
Drosophila embryos, because of their high proportion of dividing nuclei, offer many advantages for the study of the mitotic cycle. In the present study we combined immunofluorescence with interference contrast techniques to follow centrosome and spindle behavior in embryos exposed to diazepam during the first stages of development. Exposure to 100 micrograms/ml of diazepam produced polyploid and aneuploid figures resulting from the unusual fusion of one or more adjacent spindles. Diazepam also causes the inhibition of centrosome shifting and induces the formation of monopolar spindles during the metaphase-anaphase transition.  相似文献   

17.
18.
The removal of transmembrane proteins from the plasma membrane via endocytosis has emerged as powerful strategy in the regulation of receptor signalling and molecule transport. In the last decade, IRON‐REGULATED TRANSPORTER1 (IRT1) has been established as one of the key plant model proteins for studying endomembrane trafficking. The use of IRT1 and additional other metal transporters has uncovered novel factors involved in plant endocytosis and facilitated a better understanding of the role of endocytosis in the fine balancing of plant metal homoeostasis. In this review, we outline the specifics of plant endocytosis compared to what is known in yeast and mammals, and based on several examples, we demonstrate how studying metal transport has contributed to extending our knowledge of endocytic trafficking by shedding light on novel regulatory mechanisms and factors.  相似文献   

19.
20.
The fertilized egg (or cyst) of branchiopods is a highly resistant stage in the life cycle of these aquatic crustaceans. Previous examinations of these cysts have determined that early embryonic development arrests at a late blastula stage, resulting in a small, crescent-shaped body within the egg shell of these shrimp. Herein, we examine the early development of these embryos by sectioning eggs in the ovotestis, brood chamber, and several time periods after exit from the brood chamber in the clam shrimp Eulimnadia texana Packard. The early sections find no evidence of internal fertilization in the ovotestis. Eggs in the ovotestis showed no signs of cell division, whereas eggs sectioned from the brood chamber were found to be undergoing early embryonic development. A number of empty egg shells and the lack of unfertilized eggs in the brood chamber suggested that egg yolks quickly degrade after egg extrusion from the ovotestis. Cysts that were allowed to develop for 24, 48, 72, and 96 h, 1 week and 1.5 years were sectioned, and embryonic development did not change after the 48 h time period. Thus, embryos appear to arrest development somewhere between 24 and 48 h after exiting the brood chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号