首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most common evidence for the existence of secondary structure in a globular protein is the presence of a strongly pronounced far-UV circular dichroism (CD) spectrum. Although CD spectra of native proteins are well described and their quantitative analysis is widely used, similar studies for denatured proteins have still to be done. Far-UV CD spectra of nine proteins in the native and the pH-induced molten globule states were acquired and analyzed. Singular value decomposition showed that the spectra of molten globules could be described as a superposition of at least three independent components (most likely alpha-, beta- and irregular structure). A self-consistent procedure of CD spectra analysis revealed the existence of a clear correlation between the shape of the molten globule spectra and the content of secondary structure elements in the corresponding native proteins, as determined from X-ray data. A mathematical expression of this correlation in terms of the Pierson coefficient amounts to the value of 0.9 for both the alpha-helix and the beta-structure. Thus, the secondary structure of proteins in the molten globule state is close to that in the native state.  相似文献   

2.
Staphylococcal nuclease, at low pH and in the presence of high salt concentrations, has previously been proposed to exist in a partially folded or molten globule form called the "A-state" (Fink et al., 1993, Protein Sci 2:1155-1160). We have found that the A-state of nuclease at pH 2.1 in the presence of moderate to high salt concentrations and at low temperature exists in a substantially folded form structurally more similar to a native state. The A-state has the far-UV circular dichroism spectra characteristic of the native protein, which indicates that it has a large degree of secondary structure. Upon heating, the A-state denatures with a sigmoidal change in far-UV ellipticity and an observable peak in a differential scanning calorimeter trace, indicating that it is thermodynamically distinct from the denatured state. Three different mutations in a residue normally buried in the protein's core stabilize or destabilize the A-state in the same way as they affect the denaturation of the native state. The A-state must, therefore, contain at least some tertiary packing of side chains. Unlike the native state, which shows cold denaturation at low temperatures, the A-state is most stable at temperatures below 0 degrees C.  相似文献   

3.
Bovine muscle carbonic anhydrase (isoenzyme III; BCAIII) exhibited a three-state unfolding process at equilibrium upon denaturation in guanidine hydrochloride (GuHCl). The stable folding intermediate appeared to be of molten globule type. The stability towards GuHCl in terms of mid-point concentrations of denaturation were very similar for BCAIII and human CAII (HCAII). It was further demonstrated that the aromatic amino acid residues contributed significantly to the circular dichroism (CD) spectrum in the far-UV wavelength region during the native-->molten globule state transition. Thus, the ellipiticity change at 218 nm was shown to monitor the loss of tertiary interactions of aromatic side chains at the first unfolding transition as well as the rupture of secondary structure at the second unfolding transition. Similar aromatic contributions to the far-UV CD spectrum, but with varying magnitudes, were also noted for BCAII and HCAII, further emphasizing that interference of aromatic residues should not be neglected at wavelengths that normally are assigned to secondary structural changes.  相似文献   

4.
Titration of a salt-free solution of native staphylococcal nuclease by HCl leads to an unfolding transition in the vicinity of pH 4, as determined by near- and far-UV circular dichroism. At pH 2-3, the protein is substantially unfolded. The addition of further HCl results in a second transition, this one to a more structured species (the A state) with the properties of an expanded molten globule, namely substantial secondary structure, little or no tertiary structure, relatively compact size as determined by hydrodynamic radius, and the ability to bind the hydrophobic dye 1-anilino-8-naphthalene sulfonic acid. The addition of anions, in the form of neutral salts, to the acid-unfolded state at pH 2 also causes a transition leading to the A state. Fourier transform infrared analysis of the amide I band was used to compare the amount and type of secondary structure in the native and A states. A significant decrease in alpha-helix structure, with a corresponding increase in beta or extended structure, was observed in the A state, compared to the native state. A model to account for such compact denatured states is proposed.  相似文献   

5.
The acid-unfolded state of equine β-lactoglobulin was characterized by means of circular dichroism, nuclear magnetic resonance, analytical gel-filtration chromatography, and analytical centrifugation. The acid-unfolded state of equine β-lactoglobulin has a substantial secondary structure as shown by the far-ultraviolet circular dichroism spectrum but lacks persistent tertiary packing of the side chains as indicated by the near-ultraviolet circular dichroism and nuclear magnetic resonance spectra. It is nearly as compact as the native conformation as shown by the gel filtration and sedimentation experiments, and it has the exposed hydrophobic surface as indicated by its tendency to aggregate. All of these characteristics indicate that the acid-unfolded state of equine β-lactoglobulin is a molten globule state. The α helix content in the acid-unfolded state, which has been estimated from the circular dichroism spectrum, is larger than that in the native state, suggesting the presence of nonnative α helices in the molten globule state. This result suggests the generality of the intermediate with nonnative α helices during the folding of proteins having the β-clam fold. © 1997 Wiley-Liss Inc.  相似文献   

6.
The involvement of molten globule state as a distinct intermediate in the denaturation process in proteins is well documented. However, the structural characterization of such an intermediate is far from complete. We have, using fluorescence and fluorescence quenching, studied the molten globule state of bovine alpha-lactalbumin. Unlike the native state, where all the 4 tryptophans are buried in the protein, 2 tryptophans are exposed in the molten globule state. Using the hydrophobic photoactivable reagent [3H]diazofluorene, we observe an increased hydrophobic exposure in the molten globule state. These structural characteristics conform to the current views on the molten globule state, i.e. it has similar secondary structure but a poorly defined tertiary structure. Our fluorescence studies indicate the involvement of a premolten globule state in the native to molten globule state transition. This premolten globule state exists at pH 5.0 and has a very compact structure involving increased hydrophobic interactions in the protein interior. These results are also supported by circular dichroism studies.  相似文献   

7.
We have provided evidence that hen egg white lysozyme (HEWL) existed in alpha helical and beta structure dominated molten globule (MG) states at high pH and in the presence of tertiary butanol, respectively. Circular dichroism (CD), intrinsic fluorescence, ANS binding and acrylamide-induced fluorescence quenching techniques have been used to investigate alkali-induced unfolding of HEWL and the effect of tertiary butanol on the alkaline-induced state. At pH 12.75, HEWL existed as molten globule like intermediate. The observed MG-like intermediate was characterized by (i) retention of 77% of the native secondary structure, (ii) enhanced binding of ANS (approximately 5 times) compared to native and completely unfolded state, (iii) loss of the tertiary structure as indicated by the tertiary structural probes (near-UV, CD and Intrinsic fluorescence) and (iv) acrylamide quenching studies showed that MG state has compactness intermediate between native and completely unfolded states. Moreover, structural properties of the protein at isoelectric point (pI) and denatured states have also been described. We have also shown that in the presence of 45% tertiary butanol (t-butanol), HEWL at pH 7.0 and 11.0 (pI 11.0) existed in helical structure without much affecting tertiary structure. Interestingly, MG state of HEWL at pH 12.7 transformed into another MG state (MG2) at 20% t-butanol (v/v), in which secondary structure is mainly beta sheets. On further increasing the t-butanol concentration alpha helix was found to reform. We have proposed that formation of both alpha helical and beta sheet dominated intermediate may be possible in the folding pathway of alpha + beta protein.  相似文献   

8.
Several physicochemical experiments were done to obtain further information on the conformational changes occurring in beta-conglycinin in acidic-ethanol solution, using a single molecular species of this protein, beta3. By far-UV circular dichroism (CD), a transition from beta-sheet to alpha-helical structure was observed upon addition of acidic-ethanol, and the alpha-helix content was found to reach 76% in 70% ethanol (pH 2). From analyses of near-UV CD and difference absorption spectra, it was found that the tertiary structure of the beta3 species was significantly altered at ethanol concentrations between 10 and 20%. The profiles of binding of 1-anilinonaphthalene-8-sulfonic acid to the beta3 species during acidic-ethanol denaturation were indicative of the existence of intermediate conformers in the molten globule-like denaturation state. By measuring Fourier transform infrared spectra and estimating the Stokes radius by dynamic light scattering, the beta3 molecules were found to aggregate with an increase in ethanol concentration.  相似文献   

9.
The CD40 ligand molecule is unique, consisting of a receptor-binding domain anchored by an isoleucine zipper moiety. Exact determination of the multimeric state and its tendency to form molten globules has not been elucidated. Corroborating evidence of a trimerized molecule in aqueous solution was obtained from size-exclusion chromatography, laser light scattering, and analytical ultracentrifugation. A reversible acid-denatured molten globule state was observed from circular dichroism and fluorescence spectroscopy data. The molten globule state was characterized by a loss of tertiary structure with associated retention of secondary structure near pH 3. Once returned to pH 7, the acid-denatured state refolded over the course of 7 days resulting in approximately 90% recovery of the native structure. The molten globule state was characterized by a broadening of structural features in the second-derivative spectra of Fourier transform infrared spectroscopy. A component band at 1650 cm(-1) was shown to be alpha-helix and originate from amide carbonyl vibrations of the isoleucine zipper. Differential scanning calorimetry measurements characterized the pH-sensitive molten globule state at pH 3.3 as one lacking a well-defined unfolding transition with an accompanying baseline shift at 58 degrees C (a consequence of increased heat capacity). The tendency to form molten globules during acid denaturation stress permits an opportunity to study the process of partial protein unfolding with implications concerning stability. Although reversible molten globules can be formed, it is important to recognize the unusual nature since the molten globule state is formed exclusively within the beta-sheet receptor-binding region.  相似文献   

10.
Conformational analyses of a recombinant mouse tooth enamel amelogenin (rM179) were performed using circular dichroism (CD), fluorescence, differential scanning calorimetry, and sedimentation equilibrium studies. The results show that the far-UV CD spectra of rM179 at acidic pH and 10 degrees C are different from the spectra of random coil in 6 M GdnHCl. A near-UV CD spectrum of rM179 at 10 degrees C is similar to that of rM179 in 6 M GdnHCl, which indicates that aromatic residues of native structure are exposed to solvent and rotate freely. Far-UV CD values of rM179 at 80 degrees C are different from that of random-coil structure in 6 M GdnHCl, which suggests that rM179 at 80 degrees C has specific secondary structures. A gradual thermal transition was observed by far-UV CD, which is interpreted as a weak cooperative transition from specific secondary structures to other specific secondary structures. The fluorescence emission maximum for the spectrum due to Trp residues in rM179 at 10 degrees C shows the same fluorescence emission maximum as rM179 in 6 M GdnHCl and amino acid Trp, which indicates that the three Trp in rM179 are exposed to solvent. Deconvolution of differential scanning calorimetry curve gives the population of three states (A, I, and C states). These results indicate that three states (A, I, and C) have specific secondary structures, in which hydrophobic and Trp residues are exposed to the solvent. The thermodynamic characteristics of rM179 are unique and different from a typical globular protein, proline-rich peptides, and a molten globule state.  相似文献   

11.
The aspartic acid (Asp)-induced unfolding and the salt-induced folding of arginine kinase (AK) were studied in terms of enzyme activity, intrinsic fluorescence emission spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra and far-UV circular dichroism (CD) spectra. The results showed that Asp caused inactivation and unfolding of AK with no aggregation during AK denaturation. The unfolding of the whole molecule and the inactivation of AK in different Asp concentrations were compared. Much lower Asp concentration was required to induce inactivation than to produce significant conformational changes of the enzyme molecule. However, with further addition of Asp, the molar ellipticity at 222 and 208 nm, the wavelength shift and the emission intensity of ANS hardly changed. Asp denatured AK was reactivated by dilution. In addition, potassium chloride (KCl) induced the molten globule state with a compact structure after AK was denatured with 7.5 mM Asp. These results collectively elucidate the osmotic effect of Asp anions for the molten globule formed during unfolding process. They also suggest that the effect of Asp differed from that of other denaturants such as guanidine hydrochloride or urea during AK folding. The molten globule state indicates that intermediates exist during AK folding.  相似文献   

12.
Wheat germ lipase is a cereal lipase which is a monomeric protein. In the present study we sought to structurally characterize this protein along with equilibrium unfolding in solution. Conformational changes occurring in the protein with varying pH, were monitored by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy, binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS) and dynamic light scattering (DLS). Our study showed that acid denaturation of lipase lead to characterization of multiple monomeric intermediates. Native protein at pH 7.0 showed far-UV spectrum indicating mixed structure with both alpha and beta-type of characteristics. Activity of lipase was found to fall on either sides of pH 7.0–8.0. Acid-unfolded state was characterized at pH 4.0 with residual secondary structure, disrupted tertiary spectrum and red-shifted fluorescence spectrum with decreased intensity. Further decrease in pH lead to formation of secondary structure and acid-induced molten globule state was found to be stabilized at pH 1.4, with exposed tryptophan residues and hydrophobic patches. Notably, interesting finding of this study was characterization of acid-induced state at pH 0.8 with higher secondary structure content than native lipase, regain in tertiary spectrum and induction of compact conformation. Although enzymatically inactive, acid-induced state at pH 0.8 was found to be structurally more stable than native lipase, as shown by chemical and thermal denaturation profiles.  相似文献   

13.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

14.
E A Dolginova  E Roth  I Silman  L M Weiner 《Biochemistry》1992,31(48):12248-12254
Modification of Torpedo californica acetylcholinesterase (AChE) both by bis(1-oxy-2,2,5,5-tetramethyl-3-imidazolin-4-yl)disulfide (biradical) and by 4,4'-dithiopyridine, via a thiol-disulfide exchange reaction, was monitored by EPR and optical spectroscopy, respectively. Incubation with these reagents caused complete loss of enzymic activity. Treatment with glutathione of AChE modified by either of the two disulfides led to rapid release of the bound reagent with simultaneous regeneration of the single free thiol group of the enzyme. However, no concomitant recovery of catalytic activity was observed. SDS-PAGE showed that both the modified and demodified enzymes retained their structure as a disulfide-linked dimer. Circular dichroism revealed that modification of AChE by the disulfide agents with or without demodification by glutathione led to a complete disappearance of the ellipticity in the near-UV and to a much smaller decrease in ellipticity in the far-UV. The CD spectra observed are typical of the "molten globule" state of proteins. 1-Anilino-8-naphthalenesulfonate binding measurements and an enhanced susceptibility to trypsinolysis supported the supposition that chemical modification had transformed native AChE to a "molten globule".  相似文献   

15.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

16.
We have carried out denaturation studies of bovine cytochrome c (cyt c) by LiClO4 at pH 6.0 and 25 degrees C by observing changes in difference molar absorbance at 400 nm (Deltaepsilon400), mean residue ellipticities at 222 nm ([theta]222) and difference mean residue ellipticity at 409 nm (Delta[theta]409). The denaturation is a three-step process when measured by Deltaepsilon400 and Delta[theta]409, and it is a two-step process when monitored by [theta]222. The stable folding intermediate state has been characterized by near- and far-UV circular dichroism, tryptophan fluorescence, 8-anilino-1-naphthalene sulfonic acid (ANS) binding, and intrinsic viscosity measurements. A comparison of the conformational and thermodynamic properties of the LiClO4-induced molten globule (MG) state with those induced by other solvent conditions (e.g., low pH, LiCl, and CaCl2) suggests that LiClO4 induces a unique MG state, i.e., (i) the core in the LiClO4-induced state retains less secondary and tertiary structure than that in the MG states obtained in other solvent conditions, and (ii) the thermodynamic stability associated with the LiClO4-induced process, native state <--> MG state, is the same as that observed for each transition between native and MG states induced by other solvent conditions.  相似文献   

17.
The conformational state of sperm whale apomyoglobin (apoMb) was studied at neutral pH in the presence of negatively charged vesicles using near- and far-UV circular dichroism, tryptophan fluorescence, differential scanning microcalorimetry, and fast performance liquid chromatography. Under these conditions, the apoMb structure undergoes transition from its native to an intermediate state. In this state the protein loses its rigid native structure but retains its secondary structure. However, the environment of tryptophan residues remains rather hydrophobic. This intermediate state of apoMb shows properties similar to those of its molten globule state in solution. It is shown that apoMb can bind to negatively charged phospholipid vesicles even at neutral pH. A possible functional role of this intermediate state is discussed.  相似文献   

18.
Conformational stability of apoflavodoxin.   总被引:4,自引:4,他引:0       下载免费PDF全文
Flavodoxins are alpha/beta proteins that mediate electron transfer reactions. The conformational stability of apoflavodoxin from Anaboena PCC 7119 has been studied by calorimetry and urea denaturation as a function of pH and ionic strength. At pH > 12, the protein is unfolded. Between pH 11 and pH 6, the apoprotein is folded properly as judged from near-ultraviolet (UV) circular dichroism (CD) and high-field 1H NMR spectra. In this pH interval, apoflavodoxin is a monomer and its unfolding by urea or temperature follows a simple two-state mechanism. The specific heat capacity of unfolding for this native conformation is unusually low. Near its isoelectric point (3.9), the protein is highly insoluble. At lower pH values (pH 3.5-2.0), apoflavodoxin adopts a conformation with the properties of a molten globule. Although apoflavodoxin at pH 2 unfolds cooperatively with urea in a reversible fashion and the fluorescence and far-UV CD unfolding curves coincide, the transition midpoint depends on the concentration of protein, ruling out a simple two-state process at acidic pH. Apoflavodoxin constitutes a promising system for the analysis of the stability and folding of alpha/beta proteins and for the study of the interaction between apoflavoproteins and their corresponding redox cofactors.  相似文献   

19.
Conformational features of reduced and disulfide intact hen egg white lysozyme in aqueous 1,4-dioxane and 3-chloro-1, 2-propanediol solutions have been examined using circular dichroism and fluorescence spectroscopy. We find that in presence of 1, 4-dioxane, reduced lysozyme assumes a relatively compact conformational form with secondary structure closer to native state and no tertiary structure as judged by peptide and aromatic CD spectra and ANS binding studies monitored by fluorescence. Further, in presence of 40% (v/v) 3-chloro-1, 2-propanediol, disulfide intact lysozyme (DI-lysozyme) assumes a conformational form with native like secondary structure and no tertiary structure akin to a molten globule state. We correlate our results to kinetic hydrogen- deuterium exchange NMR results of the refolding of lysozyme available in literature and suggest that the conformational forms observed in our study could be models for kinetic intermediates in the refolding of lysozyme.  相似文献   

20.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号