首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the tryptophan synthase alpha- and beta(2)-subunits combine to form the alpha(2)beta(2)-complex, the enzymatic activity of each subunit is stimulated by 1-2 orders of magnitude. To elucidate the structural basis of this mutual activation, it is necessary to determine the structures of the alpha- and beta-subunits alone and together with the alpha(2)beta(2)-complex. The crystal structures of the tryptophan synthase alpha(2)beta(2)-complex from Salmonella typhimurium (Stalpha(2)beta(2)-complex) have already been reported. However, the structures of the subunit alone from mesophiles have not yet been determined. The structure of the tryptophan synthase alpha-subunit alone from Escherichia coli (Ecalpha-subunit) was determined by an X-ray crystallographic analysis at 2.3 A, which is the first report on the subunits alone from the mesophiles. The biggest difference between the structures of the Ecalpha-subunit alone and the alpha-subunit in the Stalpha(2)beta(2)-complex (Stalpha-subunit) was as follows. Helix 2' in the Stalpha-subunit, including an active site residue (Asp60), was changed to a flexible loop in the Ecalpha-subunit alone. The conversion of the helix to a loop resulted in the collapse of the correct active site conformation. This region is also an important part for the mutual activation in the Stalpha(2)beta(2)-complex and interaction with the beta-subunit. These results suggest that the formation of helix 2'that is essential for the stimulation of the enzymatic activity of the alpha-subunit is constructed by the induced-fit mode involved in conformational changes upon interaction between the alpha- and beta-subunits. This also confirms the prediction of the conformational changes based on the thermodynamic analysis for the association between the alpha- and beta-subunits.  相似文献   

2.
The tryptophan synthase alpha 2 beta 2 complex catalyzes tryptophan (Trp) biosynthesis from serine plus either indole (IN) or indole-3-glycerol phosphate (InGP). The photoreactive 5-azido analog in IN (AzIN), itself a substrate in the dark, was utilized to examine the substrate binding sites on this enzyme. When irradiated with AzIN at concentrations approaching IN saturation for the IN----Trp activity (0.1 mM), in the absence of serine, the enzyme was increasingly inactivated (up to 70-80%) concomitant with the progressive binding of a net of 2 mol AzIN per alpha beta equivalent. Little or no cooperativity in the binding of the 2 mol AzIN was observed. In contrast, there was minimal effect on the IN----InGP activity. Under these conditions AzIN appeared to be incorporated equally into each subunit. No significant inactivation nor binding occurred in the presence of serine. A quantitatively similar inactivation of InGP----Trp activity was observed over the same AzIN concentration range, suggesting common IN sites for Trp biosynthesis from either indole substrate. At higher concentrations (0.1-0.7 mM), no further inactivation occurred, although there was extensive additional binding (up to 10 mol/alpha beta equivalent). These data are consistent, although more clear-cut quantitatively, with the high- and low-affinity sites proposed from equilibrium dialysis studies. AzIN binding studies utilizing the isolated beta 2 subunit confirmed earlier reports suggesting the existence of many nonspecific IN binding sites on this subunit.  相似文献   

3.
K Tanizawa  E W Miles 《Biochemistry》1983,22(15):3594-3603
Inactivation of the beta 2 subunit and of the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli by the arginine-specific dicarbonyl reagent phenylglyoxal results from modification of one arginyl residue per beta monomer. The substrate L-serine protects the holo beta 2 subunit and the holo alpha 2 beta 2 complex from both inactivation and arginine modification but has no effect on the inactivation or modification of the apo forms of the enzyme. This result and the finding that phenylglyoxal competes with L-serine in reactions catalyzed by both the holo beta 2 subunit and the holo alpha 2 beta 2 complex indicate that L-serine and phenylglyoxal both bind to the same essential arginyl residue in the holo beta 2 subunit. The apo beta 2 subunit is protected from phenylglyoxal inactivation much more effectively by phosphopyridoxyl-L-serine than by either pyridoxal phosphate or pyridoxine phosphate, both of which lack the L-serine moiety. The phenylglyoxal-modified apo beta 2 subunit binds pyridoxal phosphate and the alpha subunit but cannot bind L-serine or L-tryptophan. We conclude that the alpha-carboxyl group of L-serine and not the phosphate of pyridoxal phosphate binds to the essential arginyl residue in the beta 2 subunit. The specific arginyl residue in the beta 2 subunit which is protected by L-serine from modification by phenyl[2-14C]glyoxal has been identified as arginine-148 by isolating a labeled cyanogen bromide fragment (residues 135-149) and by digesting this fragment with pepsin to yield the labeled dipeptide arginine-methionine (residues 148-149). The primary sequence near arginine-148 contains three other basic residues (lysine-137, arginine-141, and arginine-150) which may facilitate anion binding and increase the reactivity of arginine-148. The conservation of the arginine residues 141, 148, and 150 in the sequences of tryptophan synthase from E. coli, Salmonella typhimurium, and yeast supports a functional role for these three residues in anion binding. The location and role of the active-site arginyl residues in the beta 2 subunit and in two other enzymes which contain pyridoxal phosphate, aspartate aminotransferase and glycogen phosphorylase, are compared.  相似文献   

4.
The fluorescence quenching by acrylamide of the single tryptophan residue in the beta 2 subunit of tryptophan synthase from Escherichia coli K12 is studied for different states of the protein: the native apo-enzyme and holo-enzyme, the nicked apo-protein and holo-protein and the isolated proteolytic fragment F1 corresponding to the N-terminal two thirds of beta 2. The quenching constants measured are used to estimate the accessibility of the tryptophan residue in these different forms. The results are discussed in terms of conformational transition within the F1 domain, occurring in the presence of the cofactor, pyridoxal 5'-phosphate, in the native enzyme. The proteolytic cleavage of the native enzyme is shown to render the nicked protein unable to undergo this conformational change.  相似文献   

5.
Monoclonal antibodies directed against the native form of the beta 2 subunit of Escherichia coli tryptophan synthase strongly inhibit both its tryptophan synthase and its serine deaminase activities. The mechanism of this inactivation is studied here, by monitoring quantitatively the absorption and fluorescence properties of different well-characterized successive intermediates in the catalytic cycle of tryptophan synthase. It is shown that the antibodies interfere specifically with the formation of one or the other of these intermediates. It is concluded that the antibodies either modify or block the molecular flexibility of the protein, thus preventing conformational changes that the protein has to undergo during the catalysis. At least two different stages of the catalytic process, each one sensitive to a different class of antibodies, are shown to involve molecular movements of the polypeptide chain. Indications are given on the regions of the molecule involved in these movements.  相似文献   

6.
We have synthesized bromoacetylpyridoxamine phosphate and bromoacetylpyridoxamine and have shown that they meet three criteria for affinity labels of the beta2 subunit of tryptophan synthase: (i) the kinetic data of inactivation indicate that a binary complex is formed prior to covalent attachment; (ii) inactivation is largely prevented by the presence of pyridoxal phosphate; and (iii) inactivation is stoichiometric with incorporation of 0.7 to 0.8 mol of chromophore/mol of beta monomer. Our conclusion that inactivation of the apo beta2 subunit by bromoacetylpyridoxamine phosphate is due to the modification of cysteine is based on the disappearance of 1 mol of -SH/beta monomer and on the finding that [14C]carboxymethyl derivative in the acid hydrolysate of the protein modified by bromo[14C]acetylpyridixamine phosphate. A 39-residue tryptic peptide containing this essential cysteine has been isolated and purified from the bromo[14C]acetylpyridoxamine phosphate-labeled beta2 subunit.  相似文献   

7.
F(1) is the water-soluble portion of the ubiquitous F(1)F(0) ATP synthase. Its structure includes three alpha- and three beta-subunits, arranged as a hexameric disc, plus a gamma-subunit that penetrates the center of the disc akin to an axle. Recently Hausrath et al. (Hausrath, A. C., Grüber, G., Matthews, B. W., and Capaldi, R. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13697-13702) obtained an electron density map of E. coli F(1) at 4.4-A resolution in which the coiled-coil alpha-helices of the gamma-subunit could be seen to extend 45 A from the base of the alpha(3)beta(3) hexamer. Subsequently the structure of a truncated form of the E. coli gamma-subunit in complex with epsilon has been described (Rodgers, A. J. W., and Wilce, M. C. J. (2000) Nat. Struct. Biol. 7, 1051-1054). In the present study the 4.4-A resolution electron density map of E. coli F(1) is re-evaluated in light of the newly available data on the gamma- and epsilon-subunits. It is shown that the map of the F(1) complex is consistent with the structure of the isolated subunits. When E. coli F(1) is compared with that from beef heart, the structures of the E. coli gamma- and epsilon-subunits are seen to be generally similar to their counterparts in the bovine enzyme but to undergo major shifts in position. In particular, the two long, coiled-coil alpha-helices that lie along the axis of F(1) both unwind and rotate. Also the epsilon-subunit rotates around the axis by 81 degrees and undergoes a net translation of about 23 A. It is argued that these large-scale changes in conformation reflect distinct functional states that occur during the rotation of the gamma-subunit within the alpha(3)beta(3) hexamer.  相似文献   

8.
H Tanaka  K Tanizawa  T Arai  K Saito  T Arai  K Soda 《FEBS letters》1986,196(2):357-360
The tryptophan synthase alpha 2 beta 2 complex from Escherichia coli has been found to catalyze the beta-replacement reaction of L-serine with indazole, an indole analog which has a nitrogen atom at the 2-position (pyrazole ring). The reaction product was isolated and identified as beta-indazolealanine by mass spectrometric, elemental and NMR analyses. Careful assignment of 1H- and 13C-signals with several NMR techniques revealed that the beta-carbon of the product alanine moiety was bound to the 1-N-position of the indazole ring. This is the first example of the beta-replacement reaction catalyzed by tryptophan synthase occurring at any other position than the 3-position of indole analogs.  相似文献   

9.
High hydrostatic pressure has been shown to cause reversible dissociation of the isolated apo beta 2 dimer of tryptophan synthase from Escherichia coli into enzymatically inactive monomers [Seifert, T., Bartholmes, P., & Jaenicke, R. (1982) Biophys. Chem. 15, 1-8]. Addition of the coenzyme pyridoxal 5'-phosphate affects the structural stability, as well as the kinetics of dissociation and deactivation. The apo beta 2 dimer is deactivated faster than the holoenzyme by a factor of 10. The midpoints of the corresponding equilibrium transition curves are observed at 690 and 870 bar, respectively. As shown by hybridization of native and chemically modified beta chains, the loss of enzymatic activity is accompanied by subunit dissociation. An additional deactivating effect is produced by the pressure-induced release of the cofactor from the holoenzyme. Renaturation after decompression has been monitored by circular dichroism and intrinsic fluorescence emission. Alterations of the dichroic absorption at 222 nm reflect the recovery of the native secondary structure, while tryptophan fluorescence represents a specific probe for the native tertiary structure in the immediate neighborhood of the active center of the enzyme. By application of both methods to monitor the reconstitution of the apo beta 2 dimer, two first-order processes may be separated along the time scale. The faster phase (k1 = 1.2 X 10(-2) s-1) yields a "structured monomer" with 85% native secondary structure and the tryptophan side chain buried in its native hydrophobic environment. As indicated by sodium borohydride reduction, this intermediate is able to interact with the coenzyme pyridoxal 5'-phosphate in the correct way; however, it does not show enzymatic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Five monoclonal antibodies recognizing five different epitopes of the native beta 2 subunit of Escherichia coli tryptophan synthase (EC 4.1.2.20) were used to analyze the conformational changes occurring upon ligand binding or chemical modifications of the enzyme. For this purpose, the affinities of each antibody for the different forms of the enzyme were determined by using an enzyme-linked immunosorbent assay which allows measurement of the dissociation constant of antigen-antibody equilibrium in solution. The fixation of the coenzyme pyridoxal 5'-phosphate and the substrate L-serine modifies the affinity constants of most of the antibodies for the enzyme, thus showing the existence of extended conformational rearrangements of the protein. The association of the alpha subunit with the beta 2 subunit, which brings about an increase of the tryptophan synthase activity and abolishes the serine deaminase activity of beta 2, is accompanied by an important conformational change of the N-terminal domain of beta 2 (F1) since none of the anti-F1 monoclonal antibodies can bind to alpha 2 beta 2. Similarly, chemical modifications of beta 2 which are known to produce significant effects on the enzymatic activities of beta 2 result in changes of the affinities of the monoclonal antibodies which can be interpreted as the acquisition of different conformational states of the enzyme.  相似文献   

11.
This paper deals with stopped-flow studies on the kinetics of the regain of immunoreactivity toward five distinct monoclonal antibodies during the folding of the guanidine-unfolded beta 2 subunit of Escherichia coli tryptophan synthase and of two complementary proteolytic fragments of beta, F1 (N-terminal; Mw = 29,000) and F2 (C-terminal; Mw = 12,000). It is shown that, while selected as being "specific" for the native protein, these antibodies are all able to recognize early folding intermediates. The two antigenic determinants carried by the F2 domain and the antigenic site carried by the hinge peptide linking F1 and F2 are present so early during the folding process that their kinetics of appearance could not be followed. On the contrary, the rate constants of appearance of two "native-like" epitopes, carried by F1, could be determined during the folding of beta chains. The rate constant of appearance of the epitope to antibody 19 was found to be k = 0.065 s-1 at 12 degrees C. This value is very similar to that we reported previously for the appearance of an early epitope to the same antibody during the folding of acid-denatured beta chains. Thus, in spite of the important structural differences between guanidine-unfolded and acid-denatured beta chains, the same early folding events seem to be involved in the appearance of this epitope. The rate constant was found to be significantly smaller (k = 0.02 s-1 at 12 degrees C) for the appearance of the epitope to antibody 9. This shows that the regain of immunoreactivity is not concerted within the F1 domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

14.
Two labeled peptides were recovered from tryptic digests of the NaB3H4-reduced, performic acid-oxidized beta2 protein of Serratia marcescens tryptophan synthase. These two pyridoxyl peptides were identical except for the presence or absence of an NH2-terminal arginyl residue. Tryptic digestion of nonreduced, performic acid-oxidized protein allowed isolation of the peptides that comprise the two halves of the pyridoxyl peptide. The partial primary structure for this region of the protein was shown to be Arg-Glx-Asx-Ler-Leu-His(Gly,Gly,Ala,His)Lys(Pxy)-Thr-Asx-Glx-Val(Leu,Gly,Glx,Ala,Leu,Leu,Ala)Lys. All the data available indicate that the sequence is identical with the homologous region from the Escherichia coli enzyme.  相似文献   

15.
A reversible acid-denaturation process of the beta 2 subunit of Escherichia coli tryptophan synthase has been set up. The acid-denatured state has been physically characterized: though not in a random-coiled conformation, it is extensively denatured. The renaturation of this denatured state of beta 2 has been observed in a stopped-flow system, in the presence of a monoclonal antibody directed against native beta 2. It is shown that the association occurs very early in the folding of beta 2. The association rate constants of the antibody with the immunoreactive folding intermediate and with native beta 2 are the same (3 X 10(5) M-1.s-1). But at high antibody concentrations the formation of the antigen/antibody complex is rate limited by a rapid (5.4 X 10(-2) s-1) isomerization of refolding beta chains. This isomerization appears to reflect the formation of at least part of the epitope recognized by the antibody during the folding of beta 2. Further conformational adjustments occurring later in the folding pathway would then allow the ultimate structuring of the epitope.  相似文献   

16.
During its folding, the polypeptide chain of the beta 2 subunit of Escherichia coli tryptophan synthase (L-serine hydrolyase (adding indole) EC 4.2.1.20) undergoes dimerization. To decide whether this dimerization precedes or follows the formation of the native, functional, tertiary structure of the polypeptide chain, the kinetics of renaturation of beta 2 are studied by monitoring both the regain of native conformation and the dimerization. Dimer formation is followed by the increase of the fluorescence polarization, or by energy transfer between a fluorescence donor and a fluorescence acceptor, which occur upon association of adequately labelled beta chains. Renaturation is followed by the regain of functional properties of beta 2, i.e. its ability to bind pyridoxal-5'-phosphate or to form a fluorescent ternary complex with this coenzyme and L-serine. It is shown that for beta 2 the dimerization obeys first-order kinetics, presumably because it occurs rapidly after a rate-limiting isomerization of the monomer. The dimerization is followed by another isomerization, taking place within the dimer, which leads to the formation of the pyridoxal-5'-phosphate binding site. Still another, slow, isomerization reaction involving the F1 (N-terminal) domain completes the renaturation. With a modified form of beta 2 (trypsin-nicked beta 2) where this isomerization of F1 can be made to occur before the dimerization, the dimer is also shown to appear before the functional properties. It is concluded that a non-native dimer indeed exists as an obligatory intermediate on the folding pathway of nicked beta 2 and of beta 2, and that interdomain interactions are needed to force the polypeptide chains into their native conformations.  相似文献   

17.
The effects of domain assembly on the conformation of the F1 (N-terminal) and F2 (C-terminal) domains of the beta 2 subunit of Escherichia coli tryptophan synthase (EC 4.2.1.20) were analysed using six monoclonal antibodies which recognize six different epitopes of the native beta 2 subunit (five carried by the F1 domain and one carried by the F2 domain). For this purpose, the affinity constant of each monoclonal antibody for the isolated domains F1 or F2, the associated domains in the trypsin-nicked apo-beta 2 and in the native apo-beta 2 subunits were determined, both with the intact immunoglobulin and the Fab fragment. It was found that the association of the F1 and F2 domains within beta 2 is accompanied by structural changes of the two domains, as detected by variations of their affinity constants for the monoclonal antibodies.  相似文献   

18.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

19.
F(o)F(1)-ATP synthase catalyzes ATP synthesis coupled with proton-translocation across the membrane. The membrane-embedded F(o) portion is responsible for the H(+) translocation coupled with rotation of the oligomeric c-subunit ring, which induces rotation of the γ subunit of F(1). For solid-state NMR measurements, F(o)F(1) of thermophilic Bacillus PS3 (TF(o)F(1)) was overexpressed in Escherichia coli and the intact c-subunit ring (TF(o)c-ring) was isolated by new procedures. One of the key improvement in this purification was the introduction of a His residue to each c-subunit that acts as a virtual His(10)-tag of the c-ring. After solubilization from membranes by sodium deoxycholate, the c-ring was purified by Ni-NTA affinity chromatography, followed by anion-exchange chromatography. The intactness of the isolated c-ring was confirmed by high-resolution clear native PAGE, sedimentation analysis, and H(+)-translocation activity. The isotope-labeled intact TF(o)c-ring was successfully purified in such an amount as enough for solid-state NMR measurements. The isolated TF(o)c-rings were reconstituted into lipid membranes. A solid-state NMR spectrum at a high quality was obtained with this membrane sample, revealing that this purification procedure was suitable for the investigation by solid-state NMR. The purification method developed here can also be used for other physicochemical investigations.  相似文献   

20.
The immunochemical reactivity of unfractionated antibodies elicited by denatured beta 2 subunits of Escherichia coli tryptophan synthase [L-serine hydro-lyase (adding indole) EC 4.2.1.20] with the homologous antigen and with the native enzyme is examined. These antibodies recognize the native apoenzyme nearly as well as the denatured protein. On the contrary, after binding of its cofactor, pyridoxal 5'-phosphate, the protein exhibits a much lower immunoreactivity toward these antibodies. This decrease of affinity becomes even more pronounced when the beta 2 protein interacts with the alpha subunit. Similarly, reduction of the Schiff base formed between the cofactor and the protein leads to a strong decrease of immunoreactivity. To account for these results, it is proposed that apo-beta 2 must be a dynamic flexible structure that easily exposes to the solvent regions of its polypeptide chain that normally are buried in its interior. The increase in rigidity of this structure upon binding of the cofactor, reduction of Schiff base, and formation of the alpha 2 beta 2 complex would then account for the decreased immunoreactivity of these various states of the native beta 2 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号