首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the course of isolating and identifying the reducible compounds of connectin fibrils from chicken breast muscle, we found the presence of the lysine-derived cross-link, aldimine form of lysinonorleucine. The failure to detect this compound by Robins and Rucklidge (1980) might be due to treatment of the samples with a crude collagenase preparation, which resulted in complete digestion of connectin. The results from the present study strongly indicate that connectin participates in the lysyl oxidase-mediated cross-linking system which occurs in collagen and elastin.  相似文献   

2.
K Maruyama  Y Itoh  F Arisaka 《FEBS letters》1986,202(2):353-355
Circular dichroism spectra of native connectin from chicken breast muscle strongly suggested the abundant presence of beta-sheet structure, as much as 70% in 0.5 M KCl and 50 mM phosphate buffer, pH 7.5. alpha-Helix was not detected. These results are in contradiction with the conclusion that native connectin from rabbit skeletal muscle consists entirely of random coil [(1984) J. Mol. Biol. 180, 331-356].  相似文献   

3.
The fine structure of the myotendinous junction of the skeletal muscle of lathyritic rats caused by β-aminopropionitrile was investigated. In the junction there are finger-like processes of muscle fibers, in which thin filaments were extended from the last Z lines of myofibrils and attached to the sarcolemma of the processes. By the heavy meromyosin decoration technique, these thin filaments were identified as actin filaments. In the lathyritic muscle, the thin filaments were markedly fewer in number and distributed sparsely in the sarcoplasm.The content of connectin, an elastic protein, which is localized in myofibrils and also in sarcolemma was significantly decreased in the lathyritic muscle. A possible relationship between the changes in the fine structure of the myotendinous junction and in the connectin contents is discussed.  相似文献   

4.
5.
alpha-Connectin (also called titin 1) has been isolated from rabbit back muscle. Myofibrils were well washed with 5 mM NaHCO3 and then extracted with 0.2 M sodium phosphate, pH 7.0. The extract was dialyzed against 0.1 M potassium phosphate, pH 7.0, to sediment myosin. The supernatant, adjusted to 0.18 M potassium phosphate, pH 7.0, and 4 M urea, was subjected to DEAE Toyopearl column chromatography. beta-Connectin was eluted in the flow-through fraction and alpha-connectin was eluted at around 0.1 M NaCl, when a 0 to 0.25 M NaCl gradient was applied. The separated alpha-connectin was dialyzed against 0.2 M potassium phosphate, pH 7.0. The resultant alpha-connectin showed the same mobility as that in an SDS extract of rabbit back muscle on SDS gel electrophoresis using 1.8% polyacrylamide gels. A monoclonal antibody against chicken breast muscle beta-connectin reacted with the alpha-connectin isolated from rabbit back muscle.  相似文献   

6.
Connectin, an elastic protein, was isolated from both skeletal and cardiac muscles of various species of vertebrates, and also from smooth muscles (gizzard) of the chicken. The amino acid compositions of these preparations were very similar. Connectin was also obtained from claw and tail muscles of the crayfish, but preparations from clam adductor muscles and insect thoracic muscles were heavily contaminated with collagen and resilin, respectively. Connectin-like protein was obtained from cell membranes of erythrocytes and fluorescent anti-connectin staining suggested that it is located on the cytoplasmic surface of the membrane. An attempt to isolate an elastic protein from insoluble residues of amoebae of the slime mold and those of bacterial cell body (Salmonella) was inconclusive. The present comparative bio-chemical study has shown that connectin or connectin-like protein is widely distributed in various types of muscles and in some nonmuscle cells.  相似文献   

7.
We examined the effects of a glucocorticoid, corticosterone, on calpain activity, connectin content and protein breakdown in rat muscle. The results indicated that calpain activity was increased by corticosterone and thus breakdown of connectin was stimulated followed by increased breakdown of skeletal muscle protein.  相似文献   

8.
Changes in connectin and elasticity of skeletal muscle were determined during post-mortem ageing. The amount of connectin decreased with increasing time of post-mortem storage whereas the rate of the decrease depended on the source of muscles. The loss in elasticity of muscle coincided well with the decrease in connectin contents. Electron microscopically, a network structure between the Z discs vanished when the amount of connectin fell to zero. We have concluded that the continuous net structure of connectin is responsible for about 30% of the total elasticity of living skeletal muscle and its degradtaion is responsible for post-mortem tenderization of meat.  相似文献   

9.
Connectin is an elastic protein of vertebrate striated muscle, and consists of doublet components, alpha and beta (also called titins 1 and 2). In the present study, beta-connectin isolated in the native state was investigated in order to characterize its molecular size and shape. The molecular weight was approximately 2.1 X 10(6) (SDS gel electrophoresis) or 2.7 X 10(6) (sedimentation equilibrium). The sedimentation coefficient (SO20, w) was 17S in 0.1 M phosphate buffer, pH 7.0. The intrinsic viscosity measured in an Ostwald-type viscometer was 1.8 dl/g. However, the viscosity was greatly dependent on the velocity gradient, and at a very low velocity gradient of 0.0007 s-1, a solution of connectin (0.3 mg/ml) showed a viscosity value of 17,000 cp. Flow birefringence measurements suggested a length distribution ranging from 300 to 450 nm. Electron microscopic observations revealed that connectin is a long flexible filament and the peaks of frequency of length distribution were at 150, 300, 450, and 600 nm. It was tentatively assumed that the connectin molecule is 300-400 nm long and 34-38 nm wide. It is likely that beta-connectin is derived from alpha-connectin, which has an apparent molecular weight of 2.8 X 10(6).  相似文献   

10.
Native connectin from porcine cardiac muscle   总被引:2,自引:0,他引:2  
Native connectin was isolated from porcine cardiac muscle using the method developed for the preparation of native connectin from chicken breast muscle (Kimura et al. (1984) J. Biochem. 96, 1947-1950). It was not necessary to keep cardiac muscle at 0 degrees C before preparation: the proteolysis of alpha-connectin to beta-connectin proceeded during the preparation of myofibrils. Cardiac connectin showed almost the same properties as those of skeletal muscle connectin: mobility in SDS gel electrophoresis, filamentous structure under an electron microscope, circular dichroism spectra, UV absorption spectra, and amino acid composition. Porcine cardiac connectin cross-reacted with antiserum against chicken breast muscle connectin as revealed by an immunoblot method. Immunoelectron microscopical observations revealed an abundance of connectin antigenic sites around the A-I junction area of cardiac myofibrils. Cardiac connectin also interacted with myosin and actin filaments at low ionic strengths to form aggregates. The extent of interaction was somewhat weaker in the case of cardiac connectin than skeletal muscle connectin, regardless of the origin of myosin and actin (porcine cardiac and rabbit skeletal muscles). In conclusion, cardiac connectin is very similar, but not identical to skeletal muscle connectin.  相似文献   

11.
After exhaustive salt extractions of rabbit and human skeletal muscle, the amino acid compositions of the residual proteins were similar to those reported for connectin. Complete removal of collagen contamination was achieved only after treatment of the connectin preparations with bacterial collagenase. On reduction with KB3H4, the small amounts of lysine-derived reducible cross-links that were present in the initial connectin preparations were completely absent after treatment with collagenase. In adult human connectin some hexitol-lysine derivatives were present after reduction. These results indicate that, in contrast to previous reports, connectin does not participate in the same lysyl oxidase-mediated cross-linking system that occurs in collagen and elastin.  相似文献   

12.
13.
The elastic protein isolated from myofibrils of chicken skeletal muscle was compared with extracellular non-collagenous reticulin prepared from chicken liver and skeletal muscle. The amino acid compositions of these proteins were similar except that their contents of Phe, Leu, Cys/2, and Hyp were different. The impregnations of the elastic protein and reticulin with silver were also different. The reticulin was not at all elastic. It also differed from reticulin in solubility and antigenicity. It is proposed to call the intracellular elastic protein connectin.  相似文献   

14.
15.
16.
Connectin is an elastic protein found in vertebrate striated muscle and in some invertebrates as connectin-like proteins. In this study, we determined the structure of the amphioxus connectin gene and analyzed its sequence based on its genomic information. Amphioxus is not a vertebrate but, phylogenetically, the lowest chordate. Analysis of gene structure revealed that the amphioxus gene is approximately 430 kb in length and consists of regions with exons of repeatedly aligned immunoglobulin (Ig) domains and regions with exons of fibronectin type 3 and Ig domain repeats. With regard to this sequence, although the region corresponding to the I-band is homologous to that of invertebrate connectin-like proteins and has an Ig-PEVK region similar to that of the Neanthes sp. 4000K protein, the region corresponding to the A-band has a super-repeat structure of Ig and fibronectin type 3 domains and a kinase domain near the C-terminus, which is similar to the structure of vertebrate connectin. These findings revealed that amphioxus connectin has the domain structure of invertebrate connectin-like proteins at its N-terminus and that of vertebrate connectin at its C-terminus. Thus, amphioxus connectin has a novel structure among known connectin-like proteins. This finding suggests that the formation and maintenance of the sarcomeric structure of amphioxus striated muscle are similar to those of vertebrates; however, its elasticity is different from that of vertebrates, being more similar to that of invertebrates.  相似文献   

17.
《The Journal of cell biology》1989,109(5):2169-2176
Connectin (also called titin) is a huge, striated muscle protein that binds to thick filaments and links them to the Z-disc. Using an mAb that binds to connectin in the I-band region of the molecule, we studied the behavior of connectin in both relaxed and activated skinned rabbit psoas fibers by immunoelectron microscopy. In relaxed fibers, antibody binding is visualized as two extra striations per sarcomere arranged symmetrically about the M-line. These striations move away from both the nearest Z-disc and the thick filaments when the sarcomere is stretched, confirming the elastic behavior of connectin within the I- band of relaxed sarcomeres as previously observed by several investigators. When the fiber is activated, thick filaments in sarcomeres shorter than 2.8 microns tend to move from the center to the side of the sarcomere. This translocation of thick filaments within the sarcomere is accompanied by movement of the antibody label in the same direction. In that half-sarcomere in which the thick filaments move away from the Z-disc, the spacings between the Z-disc and the antibody and between the antibody and the thick filaments both increase. Conversely, on the side of the sarcomere in which the thick filaments move nearer to the Z-line, these spacings decrease. Regardless of whether I-band spacing is varied by stretch of a relaxed sarcomere or by active sliding of thick filaments within a sarcomere of constant length, the spacings between the Z-line and the antibody and between the antibody and the thick filaments increase with I-band length identically. These results indicate that the connectin filaments remain bound to the thick filaments in active fibers, and that the elastic properties of connectin are unaltered by calcium ions and cross-bridge activity.  相似文献   

18.
After NaB3H4-reduction of connectin from human skeletal muscle, the changes in the amounts of the reducible cross-links and specific radioactivity of this elastic protein were followed throughout the whole life-span from embryo to old age. The reducible cross-links, aldimine forms of lysinonorleucine and histidino-hydroxymerodesmosine, and unidentified reducible compounds, which were assumed to be cross-linking amino acids, were found to remarkably decrease with age. A progressive decrease in the incorporation of tritium into the reducible compounds was also observed. We conclude that the conversion of the reducible cross-links derived from lysine and hydroxylysine aldehydes to non-reducible compounds is an essential step in the maturation of connectin fibrils, similar to collagen fibrils.  相似文献   

19.
We performed cDNA cloning of chicken breast muscle connectin. Together with previous results, our analysis elucidated a 24.2 kb sequence encoding the amino terminus of the protein. This corresponded to the I-band region of the skeletal muscle sarcomere, which is involved in extension and contraction between the Z-line and the A-I junction. There were fewer middle immunoglobulin domains and amino acid residues in the PEVK segment of chicken breast muscle connectin than in human skeletal muscle connectin, but more than in human cardiac muscle connectin. We measured passive tension generation by stretching mechanically skinned myofibril bundles. This revealed that appreciable tension development in chicken breast muscle began at longer sarcomere spacings than in rabbit cardiac muscle, but at shorter spacings than in rabbit psoas and soleus muscles. We suggest that the chicken breast muscle sarcomere remains in a relatively extended state even in unstrained sarcomeres. This would explain why chicken breast muscle does not extend under force to the same degree as rabbit psoas and soleus muscles.  相似文献   

20.
Very long, elastic connectin/titin molecules position the myosin filaments at the center of a sarcomere by linking them to the Z line. The behavior of the connectin filaments during sarcomere formation in differentiating chicken skeletal muscle cells was observed under a fluorescent microscope using the antibodies to the N terminal (located in the Z line), C terminal (M line), and C zone (myosin filament) regions of connectin and was compared to the incorporation of -actinin and myosin into forming sarcomeres. In early stages of differentiating muscle cells, the N terminal region of connectin was incorporated into a stress fiber-like structure (SFLS) together with -actinin to form dots, whereas the C terminal region was diffusely distributed in the cytoplasm. When both the C and N terminal regions formed striations in young myofibrils, the epitope to the C zone of A-band region, that is the center between the A-I junction and the M-line, initially was diffuse in appearance and later formed definite striations. It appears that it took some time for the N and C terminal regions of connectin to form a regular organization in a sarcomere. Thus the two ends of the connectin filaments were first fixed followed by the specific binding of the middle portion onto the myosin filament during sarcomere formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号