首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Summary High‐density single‐nucleotide polymorphism (SNP) microarrays provide a useful tool for the detection of copy number variants (CNVs). The analysis of such large amounts of data is complicated, especially with regard to determining where copy numbers change and their corresponding values. In this article, we propose a Bayesian multiple change‐point model (BMCP) for segmentation and estimation of SNP microarray data. Segmentation concerns separating a chromosome into regions of equal copy number differences between the sample of interest and some reference, and involves the detection of locations of copy number difference changes. Estimation concerns determining true copy number for each segment. Our approach not only gives posterior estimates for the parameters of interest, namely locations for copy number difference changes and true copy number estimates, but also useful confidence measures. In addition, our algorithm can segment multiple samples simultaneously, and infer both common and rare CNVs across individuals. Finally, for studies of CNVs in tumors, we incorporate an adjustment factor for signal attenuation due to tumor heterogeneity or normal contamination that can improve copy number estimates.  相似文献   

2.
Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls.  相似文献   

3.
ABSTRACT: BACKGROUND: Variations in DNA copy number carry information on the modalities of genome evolution and mis-regulation of DNA replication in cancer cells. Their study can help localize tumor suppressor genes, distinguish different populations of cancerous cells, and identify genomic variations responsible for disease phenotypes. A number of different high throughput technologies can be used to identify copy number variable sites, and the literature documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation in copy number is relatively common in the sample at hand. This problem encompasses the cases of copy number polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual. RESULTS: We present a segmentation method named generalized fused lasso (GFL) to reconstruct copy number variant regions, that is based on penalized estimation and is capable of processing multiple signals jointly. Our approach is computationally very attractive and leads to sensitivity and specificity levels comparable to those of state-of-the-art specialized methodologies. We illustrate its applicability with simulated and real data sets. CONCLUSIONS: The flexibility of our framework makes it applicable to data obtained with a wide range of technology. Its versatility and speed make GFL particularly useful in the initial screening stages of large data sets.  相似文献   

4.
Increasing evidence indicates that copy number variants (CNVs) have great relevance to common human diseases. In α-thalassemia, clinical phenotypes are related to genotypes, specifically copy number changes in the human α-globin gene cluster. Assays are available for high-throughput screening of unknown CNVs genome-wide and also for targeted CNV genotyping at loci associated with genetic disorders. Here we describe a universal quantitative approach based on nested real-time quantitative polymerase chain reaction for accurate determination of copy numbers at multiple particular gene loci. We used the α-globin gene as a model system, obtaining the reproducibility and sensitivity to analyze different gene copies and testing 95 DNA samples with 16 different known genotypes. Our results showed that this approach has high sensitivity and low standard deviations for correctly genotyping DNA samples containing different copy numbers of the α1 and α2 globin genes. Our method is rapid, simple, and reliable, and it could be used to simultaneously screen for α-thalassemia deletions or triplications. Moreover, it has potential as a versatile technology for the rapid genotyping of known CNVs in a targeted region.  相似文献   

5.
Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states.  相似文献   

6.
The detection of copy number variants (CNV) by array-based platforms provides valuable insight into understanding human diversity. However, suboptimal study design and data processing negatively affect CNV assessment. We quantitatively evaluate their impact when short-sequence oligonucleotide arrays are applied (Affymetrix Genome-Wide Human SNP Array 6.0) by evaluating 42 HapMap samples for CNV detection. Several processing and segmentation strategies are implemented, and results are compared to CNV assessment obtained using an oligonucleotide array CGH platform designed to query CNVs at high resolution (Agilent). We quantitatively demonstrate that different reference models (e.g. single versus pooled sample reference) used to detect CNVs are a major source of inter-platform discrepancy (up to 30%) and that CNVs residing within segmental duplication regions (higher reference copy number) are significantly harder to detect (P < 0.0001). After adjusting Affymetrix data to mimic the Agilent experimental design (reference sample effect), we applied several common segmentation approaches and evaluated differential sensitivity and specificity for CNV detection, ranging 39–77% and 86–100% for non-segmental duplication regions, respectively, and 18–55% and 39–77% for segmental duplications. Our results are relevant to any array-based CNV study and provide guidelines to optimize performance based on study-specific objectives.  相似文献   

7.
8.
Affymetrix SNP arrays have been widely used for single-nucleotide polymorphism (SNP) genotype calling and DNA copy number variation inference. Although numerous methods have achieved high accuracy in these fields, most studies have paid little attention to the modeling of hybridization of probes to off-target allele sequences, which can affect the accuracy greatly. In this study, we address this issue and demonstrate that hybridization with mismatch nucleotides (HWMMN) occurs in all SNP probe-sets and has a critical effect on the estimation of allelic concentrations (ACs). We study sequence binding through binding free energy and then binding affinity, and develop a probe intensity composite representation (PICR) model. The PICR model allows the estimation of ACs at a given SNP through statistical regression. Furthermore, we demonstrate with cell-line data of known true copy numbers that the PICR model can achieve reasonable accuracy in copy number estimation at a single SNP locus, by using the ratio of the estimated AC of each sample to that of the reference sample, and can reveal subtle genotype structure of SNPs at abnormal loci. We also demonstrate with HapMap data that the PICR model yields accurate SNP genotype calls consistently across samples, laboratories and even across array platforms.  相似文献   

9.
Y X Fu  R Chakraborty 《Genetics》1998,150(1):487-497
Minisatellite and microsatellite are short tandemly repetitive sequences dispersed in eukaryotic genomes, many of which are highly polymorphic due to copy number variation of the repeats. Because mutation changes copy numbers of the repeat sequences in a generalized stepwise fashion, stepwise mutation models are widely used for studying the dynamics of these loci. We propose a minimum chi-square (MCS) method for simultaneous estimation of all the parameters in a stepwise mutation model and the ancestral allelic type of a sample. The MCS estimator requires knowing the mean number of alleles of a certain size in a sample, which can be estimated using Monte Carlo samples generated by a coalescent algorithm. The method is applied to samples of seven (CA)n repeat loci from eight human populations and one chimpanzee population. The estimated values of parameters suggest that there is a general tendency for microsatellite alleles to expand in size, because (1) each mutation has a slight tendency to cause size increase and (2) the mean size increase is larger than the mean size decrease for a mutation. Our estimates also suggest that most of these CA-repeat loci evolve according to multistep mutation models rather than single-step mutation models. We also introduced several quantities for measuring the quality of the estimation of ancestral allelic type, and it appears that the majority of the estimated ancestral allelic types are reasonably accurate. Implications of our analysis and potential extensions of the method are discussed.SINCE the discovery that a large number of loci with tandemly repeated sequences in human and many eukaryote species are highly polymorphic because of copy number variation of the repeats in different individuals (Jeffreys 1985; Litt and Luty 1989; Weber and May 1989), allele size data from such loci are rapidly becoming the dominant source of genetic markers for genome mapping, forensic testing, and population studies. Loci with repeat sequences longer than 5 bp are generally referred to as minisatellite or variable number tandem repeat loci, and those with repeat sequences between 2 to 5 bp are referred to as microsatellite or short tandem repeat loci (Tautz 1993). Because mutations change the copy number of such loci in a stepwise fashion, rapid accumulation of population samples from minisatellite and microsatellite loci has resurrected the interest of the stepwise mutation model (SMM), which was popular in the 1970s.  相似文献   

10.

Background

Tumor single nucleotide polymorphism (SNP) array is a common platform for investigating the cancer genomic aberration and the functionally important altered genes. Original SNP array signals are usually corrupted by noise, and need to be de-convoluted into absolute copy number profile by analytical methods. Unfortunately, in contrast with the popularity of tumor Affymetrix SNP array, the methods that are specifically designed for this platform are still limited. The complicated characteristics of noise in signals is one of the difficulties for dissecting tumor Affymetrix SNP array data, as they inevitably blur the distinction between aberrations and create an obstacle for the copy number aberration (CNA) identification.

Results

We propose a tool named TAFFYS for comprehensive analysis of tumor Affymetrix SNP array data. TAFFYS introduce a wavelet-based de-noising approach and copy number-specific signal variance model for suppressing and modelling the noise in signals. Then a hidden Markov model is employed for copy number inference. Finally, by using the absolute copy number profile, statistical significance of each aberration region is calculated in term of different aberration types, including amplification, deletion and loss of heterozygosity (LOH). The result shows that copy number specific-variance model and wavelet de-noising algorithm fits well with the Affymetrix SNP array signals, leading to more accurate estimation for diluted tumor sample (even with only 30% of cancer cells) than other existed methods. Results of examinations also demonstrate a good compatibility and extensibility for different Affymetrix SNP array platforms. Application on the 35 breast tumor samples shows that TAFFYS can automatically dissect the tumor samples and reveal statistically significant aberration regions where cancer-related genes locate.

Conclusions

TAFFYS provide an efficient and convenient tool for identifying the copy number alteration and allelic imbalance and assessing the recurrent aberrations for the tumor Affymetrix SNP array data.  相似文献   

11.

Background

Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples.

Methods

To address these limitations, we designed a novel "Virtual Normal" algorithm (VN), which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set.

Results

The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions.

Conclusions

We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.  相似文献   

12.
Summary Most existing methods for identifying aberrant regions with array CGH data are confined to a single target sample. Focusing on the comparison of multiple samples from two different groups, we develop a new penalized regression approach with a fused adaptive lasso penalty to accommodate the spatial dependence of the clones. The nonrandom aberrant genomic segments are determined by assessing the significance of the differences between neighboring clones and neighboring segments. The algorithm proposed in this article is a first attempt to simultaneously detect the common aberrant regions within each group, and the regions where the two groups differ in copy number changes. The simulation study suggests that the proposed procedure outperforms the commonly used single‐sample aberration detection methods for segmentation in terms of both false positives and false negatives. To further assess the value of the proposed method, we analyze a data set from a study that identified the aberrant genomic regions associated with grade subgroups of breast cancer tumors.  相似文献   

13.
Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.  相似文献   

14.
We present a protocol for reliably detecting DNA copy number aberrations in a single human cell. Multiple displacement-amplified DNAs of a cell are hybridized to a 3,000-bacterial artificial chromosome (BAC) array and to an Affymetrix 250,000 (250K)-SNP array. Subsequent copy number calling is based on the integration of BAC probe-specific copy number probabilities that are estimated by comparing probe intensities with a single-cell whole-genome amplification (WGA) reference model for diploid chromosomes, as well as SNP copy number and loss-of-heterozygosity states estimated by hidden Markov models (HMM). All methods for detecting DNA copy number aberrations in single human cells have difficulty in confidently discriminating WGA artifacts from true genetic variants. Furthermore, some methods lack thorough validation for segmental DNA imbalance detection. Our protocol minimizes false-positive variant calling and enables uniparental isodisomy detection in single cells. Additionally, it provides quality assessment, allowing the exclusion of uninterpretable single-cell WGA samples. The protocol takes 5-7 d.  相似文献   

15.
Whole genome amplification by multiple displacement amplification (MDA) offers investigators using precious genomic DNA samples a high fidelity method for amplifying nanogram quantities of DNA several thousandfold. This becomes especially important for the modemrn day genomics researcher who more and more commonly is applying today's genome scanning technologies to patient cohort samples collected years ago that are irrecoverable and invariably in short supply. We present evidence here that MDA-prepared genomic DNA includes artifacts of chromosomal copy number that resemble copy number polymorphisms (CNPs) upon analysis of the DNA on the Affymetrix 10K GeneChip. The study of CNPs in both health and disease is a rapidly growing area of research, however our current understanding of the relevance of CNPs is incomplete. Our data indicate that utilization of whole genome-amplified samples for analysis heavily reliant on accurate copy number retention could be confounded if the genomic DNA sample was subjected to MDA. We recommend that small amounts of patient cohort DNA stocks be set aside and not subjected to whole genome amplification in order to facilitate the unbiased determination of chromosomal copy numbers when desired.  相似文献   

16.
Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species.  相似文献   

17.
Whole-genome microarrays with large-insert clones designed to determine DNA copy number often show variation in hybridization intensity that is related to the genomic position of the clones. We found these ‘genomic waves’ to be present in Illumina and Affymetrix SNP genotyping arrays, confirming that they are not platform-specific. The causes of genomic waves are not well-understood, and they may prevent accurate inference of copy number variations (CNVs). By measuring DNA concentration for 1444 samples and by genotyping the same sample multiple times with varying DNA quantity, we demonstrated that DNA quantity correlates with the magnitude of waves. We further showed that wavy signal patterns correlate best with GC content, among multiple genomic features considered. To measure the magnitude of waves, we proposed a GC-wave factor (GCWF) measure, which is a reliable predictor of DNA quantity (correlation coefficient = 0.994 based on samples with serial dilution). Finally, we developed a computational approach by fitting regression models with GC content included as a predictor variable, and we show that this approach improves the accuracy of CNV detection. With the wide application of whole-genome SNP genotyping techniques, our wave adjustment method will be important for taking full advantage of genotyped samples for CNV analysis.  相似文献   

18.
The solid-phase minisequencing method (Syvänen et al. 1990) allows accurate quantative determination of the ratio between two DNA or RNA sequences that are present as a mixture in a sample and differ from each other only by a single nucleotide. Here, we present another application of the minisequening method, the determination of the gene copy number in a genome. The copy number of a marker gene aspartyl glucosaminidase (AGA) located at 4qter, was determined in three patients with a chromosomal alteration involving the distal region of 4q. For the minisequencing assay an equal amount of DNA from a patient homozygous for a mutation in the AGA gene was added to the DNA samples concerned. The relative amount of the normal sequence determined in each combined sample gives the copy number of the AGA gene. Fluorescence in situ hybridization (FISH), applied in parallel as a control, produced concordant results with solid-phase minisequencing in each case. As the potential of the minisequencing lies in automation, it could be a useful tool in the screening of monosomies, trisomies or loss of heterozygosity in diagnostics.  相似文献   

19.
We have examined the viral selection that may occur during transmission by studying the env gene sequences from four cases of mother-to-child transmission of human immunodeficiency virus type 1. The V3 region sequences were directly amplified from both plasma viral RNA and peripheral blood mononuclear cells containing proviral DNA from mothers at delivery and at the time of diagnosis for children. Transmission occurred perinatally in three cases. The similarity of the viral sequences in each infant sample contrasted with the heterogeneous viral populations in the mothers. Phylogenetic analysis indicated the transmission of one or a few closely related maternal minor virus variants. In contrast, the child virus population in the fourth case was as heterogeneous as that of his mother, and phylogenetic analysis strongly suggested the transmission of multiple maternal variants. This case of multiple transmission was confirmed by analyzing sequences obtained at three times after delivery. Strains with sequences corresponding to the syncytium-inducing phenotype were also transmitted in this fourth case, and this was associated with the rapid development of disease in the child. There was no evidence for transmission of particular viral variants from mother to infant. We have thus described a particular case of vertical human immunodeficiency virus type 1 transmission with the transmission of multiple maternal variants to the infant and a rapid, fatal outcome in the child.  相似文献   

20.
Comparative genomic hybridization (CGH) microarrays have been used to determine copy number variations (CNVs) and their effects on complex diseases. Detection of absolute CNVs independent of genomic variants of an arbitrary reference sample has been a critical issue in CGH array experiments. Whole genome analysis using massively parallel sequencing with multiple ultra-high resolution CGH arrays provides an opportunity to catalog highly accurate genomic variants of the reference DNA (NA10851). Using information on variants, we developed a new method, the CGH array reference-free algorithm (CARA), which can determine reference-unbiased absolute CNVs from any CGH array platform. The algorithm enables the removal and rescue of false positive and false negative CNVs, respectively, which appear due to the effects of genomic variants of the reference sample in raw CGH array experiments. We found that the CARA remarkably enhanced the accuracy of CGH array in determining absolute CNVs. Our method thus provides a new approach to interpret CGH array data for personalized medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号