首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Partial (~ 780 bp) mitochondrial cytochrome c oxidase subunit I (COI) and near complete nuclear 18S rDNA (~ 1,780 bp) sequences were directly compared to assess their relative usefulness as markers for species identification and phylogenetic analysis of coccidian parasites (phylum Apicomplexa). Fifteen new COI partial sequences were obtained using two pairs of new primers from rigorously characterised (sensu Reid and Long, 1979) laboratory strains of seven Eimeria spp. infecting chickens as well as three additional sequences from cloned laboratory strains of Toxoplasma gondii (ME49 and GT1) and Neospora caninum (NC1) that were used as outgroup taxa for phylogenetic analyses. Phylogenetic analyses based on COI sequences yielded robust support for the monophyly of individual Eimeria spp. infecting poultry except for the Eimeria mitis/mivati clade; however, the lack of a phenotypically characterised strain of E. mivati precludes drawing any firm conclusions regarding this observation. Unlike in the 18S rDNA-based phylogenetic reconstructions, Eimerianecatrix and Eimeria tenella formed monophyletic clades based on partial COI sequences. A species delimitation test was performed to determine the probability of making a correct identification of an unknown specimen (sequence) based on either complete 18S rDNA or partial COI sequences; in almost all cases, the partial COI sequences were more reliable as species-specific markers than complete 18S rDNA sequences. These observations demonstrate that partial COI sequences provide more synapomorphic characters at the species level than complete 18S rDNA sequences from the same taxa. We conclude that COI performs well as a marker for the identification of coccidian taxa (Eimeriorina) and will make an excellent DNA 'barcode' target for coccidia. The COI locus, in combination with an 18S rDNA sequence as an 'anchor', has sufficient phylogenetic signal to assist in the resolution of apparent paraphylies within the coccidia and likely more broadly within the Apicomplexa.  相似文献   

3.
Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus , corresponding to the ' richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus ' richtersi group' and within Richtersius . Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ' richtersi-areolatus group'.  相似文献   

4.
To investigate phylogenetic relationships in Nicotiana, the intergenic spacer sequences of 5S rDNA were analyzed in species with 2n=18, 20 or 24, and amphidiploid species with 2n=48. The chromosomal localization of the 5S rDNA was determined by fluorescence in situ hybridization (FISH). In species with 2n=24 and their descendants, a major 5S rDNA-specific PCR fragment of 400–650 bp was obtained. The amphidiploid species contained similar length of 5S rDNA units derived from putative diploid progenitors. Among the five clones from each representative PCR fragment, some nucleotide exchanges and length heterogeneity were observed. The latter was due to variation in the spacer region, such as differences in the length of poly A and/or poly T tracts as well as insertions/deletions. Interspecific comparisons of each 5S rDNA sequence demonstrated that the spacer sequence could be divided into three regions. Excluding gaps from the aligned spacer sequences of 5S rDNA, phylogenetic trees were constructed. Each phylogenetic tree showed an almost identical topology even if different algorithms were applied. The chromosomal locations of the 5S rDNA in each species correlated with the phylogenetic topology. The phylogenetic trees were generally in agreement with the current classification. Received: 15 January 2001 / Accepted: 15 February 2001  相似文献   

5.
In a study of relationships among selected cyst-forming and noncyst-forming species of Heteroderoidea, combined sequences comprised of DNA from part of the conserved 18S ribosomal RNA gene (rDNA) plus the complete ITS rDNA segment were more similar to analyses based on the ITS data alone than to analyses based on the 18S data alone. One of the two noncyst-forming species, Ekphymatodera thomasoni, grouped with cyst-forming species of Heteroderoidea. Bilobodera flexa, also a noncyst-forming species, was separated from all the other taxa by a long branch. Afenestrata koreana, with a weakly sclerotized cyst, grouped closely with H. bifenestra. These observations suggest that phylogenetic analyses using molecular data may aid in our understanding of the evolution of cyst formation in nematodes, including the possibility of secondary loss. The usefulness of molecular phylogenetic analyses in nematodes may depend more on the particular selection of taxa than on mere addition of data from additional genes.  相似文献   

6.
Phylogenetic relationships of 6 species in the trematode subfamily Haplorchiinae were analyzed using small and large subunit of ribosomal DNA genes (18S rDNA and 28S rDNA) and internal transcribed spacer subunit II (ITS2) region as molecular markers. Maximum Likelihood and Bayesian inference analyses of combined rDNAs and ITS2 indicated a close relationship between the genera Haplorchis and Procerovum, while these two genera were distinct from Stellantchasmus falcatus. These phylogenetic relationships were consistent with the number of testes but not with the characters of the modification of the seminal vesicle or of the ventral sucker. Although three Haplorchis spp. were, together with Procerovum, in the same cluster, their mutual topology was incongruent between rDNA and ITS2 trees. Phylogenetic analyses using other molecular markers with more species are necessary to work out solid phylogenetic relationships among the species in this subfamily.  相似文献   

7.
A novel entomopathogenic nematode species, Heterorhabditidoides rugaoensis n. sp. RG081015, collected from Rugao, China, is described. The new species is morphologically very similar to H. chongmingensis but can be distinguished from it on the basis of some morphological characteristics, combined with molecular data and a cross-hybridization test. Males of the new species can be recognized on the basis of body length averaging 1396.2 μm; lateral field with one ridge; metastome isoglottoid with one hemispherical swellings comprised of two to three well-developed warts; asymmetric spicules; peloderan bursa. In IJs, EP = 134.5 μm; ES = 149.3 μm; tail length = 82.5 μm; and a = 20.5. Hermaphroditic females have four to five lateral ridges. The 18S rDNA and ITS sequences of the two nematodes share 99% and 98% identity, respectively. Phylogenetic trees of 18S rDNA and ITS indicate that the new species is most closely related to H. chongmingensis; thus, the two nematodes belong to the same genus. Failure of cross-hybridization between them indicates that nematode strain RG081015 is a novel species and is described herein as H. rugaoensis n. sp. The LC50 of the novel species against Galleria mellonella were 24.35 IJs / ml within 48 hours of infection. Morphological characteristics, genetic similarity analyses, and phylogenetic relationships provide strong evidence that some species of Oscheius/Insectivora-group should be reassigned to the genus Heterorhabditidoides.  相似文献   

8.
蝗科高级阶元的分子系统发育(英文)   总被引:2,自引:0,他引:2  
迄今,蝗科内各分类阶元之间的系统发生关系大部分是未知的。本文用来自中国24种蝗科昆虫的12SrDNA和16SrDNA2个基因的联合序列(共795bp)数据,以锥头蝗科的锥头蝗(Pyrgomorpha conica)为外群,重建了分子系统树。研究结果表明,在12SrDNA与16SrDNA组成的联合数据中,转换的替代速率明显比颠换的替代速率高得多,核酸的替代已经发生了饱和。分子系统树表明:斑翅蝗亚科是一单系群,该亚科是一个合法的亚科,但斑腿蝗亚科和蝗亚科都不是单系群;斑翅蝗亚科在蝗科内是一个相对原始的类群,而稻蝗亚科比斑翅蝗亚科相对进化,比蝗科的其他亚科的种类相对原始。  相似文献   

9.
Endosymbiotic green algae of Japanese Paramecium bursaria were phylogenetically analyzed based on DNA sequences from the ribosomal DNA operon (18S rDNA, ITS1, 5.8S rDNA, and ITS2). Phylogenetic trees constructed using 18S rDNA sequences showed that the symbionts belong to the Chlorella sensu stricto (Trebouxiophyceae) group. They are genetically closer to the C. vulgaris Beijerinck group than to C. kessleri Fott et Nováková as proposed previously. Branching order in C. vulgaris group was unresolved in 18S rDNA trees. Compared heterogeneities of 18S rDNA, ITS1, 5.8S r, and ITS2 among symbionts and two Chlorella species, indicated that the ITS2 region (and probably also ITS1) is better able to resolve phylogenetic problems in such closely related taxa. All six symbiotic sequences obtained here (approximately 4000-bp sequences of 18S rDNA, ITS1, 5.8S rDNA, and ITS2) were completely identical in each, strongly suggesting a common origin.  相似文献   

10.
Sakai H  Takeda A  Mizukubo T 《ZooKeys》2011,(135):21-40
Mixed populations of Xiphinema americanum-group species were detected from a root zone soil sample of Japanese holly, Ilex crenata, during a survey for plant-parasitic nematodes of commercial ornamental plant nurseries in Chiba Prefecture, Japan. From the result of the morphological study, the species were identified as Xiphinema brevicolle and Xiphinema sp. This is the first record of Xiphinema brevicolle in Japan. Morphometrics of Xiphinema brevicolle generally agree with those of the type specimens and the topotype specimens. Xiphinema sp. morphometrically resembles Xiphinema paramonovi except for tail length. The mitochondrial COI region, the nuclear 18S rDNA and the nuclear large subunit rDNA D2/D3 region of the species were sequenced and compared in the molecular study. For the COI region, PCR primers were newly designed to obtain longer sequences, ca. 900 bp, than previously used. Sequence identities of COI, 18S and D2/D3 regions between these two populations were 84.0-84.1%, 99.9% and 98.1-98.2%, respectively. Phylogenetic analyses of maximum likelihood trees were carried out to compare genetic relationships among the group and some suggestions were made on the Xiphinema brevicolle-subgroup.  相似文献   

11.
Phylogeny of Tunicata inferred from molecular and morphological characters   总被引:5,自引:0,他引:5  
The phylogeny of the Tunicata was reconstructed using molecular and morphological characters. Mitochondrial cytochrome oxidase I (cox1) and 18S rDNA sequences were obtained for 14 and 4 tunicate species, respectively. 18S rDNA sequences were aligned with gene sequences obtained from GenBank of 57 tunicates, a cephalochordate, and a selachian craniate. Cox1 sequences were aligned with the sequence of two ascidians and a cephalochordate obtained from GenBank. Traditional, morphological, life history, and biochemical characters of larval and adult stages were compiled from the literature and analyzed cladistically. Separate and simultaneous parsimony analyses of molecular and morphological data were carried out. Aplousobranch ascidians from three different families were included in a molecular phylogenetic analysis for the first time. Analysis of the morphological, life history, and biochemical characters results in a highly unresolved tree. Aplousobranchiata form a strongly supported monophylum in the analysis of the 18S rDNA data, the morphological data, and the combined data set. Cionidae is not included in the Aplousobranchiata but nests within the Phlebobranchiata. Appendicularia (=Larvacea) nest within the 'Ascidiacea' as the sister taxon of Aplousobranchiata in the parsimony analysis of the 18S rDNA data and the combined analysis. A potential morphological synapomorphy of Aplousobranchiata plus Appendicularia is the horizontal orientation of the larval tail. In the 18S rDNA and the combined analysis, Thaliacea is included in the 'Ascidiacea' as the sister group to Phlebobranchiata. Pyrosomatida is found to be the sister taxon to the Salpidae in analyses of 18S rDNA and combined data, whereas the analysis of the morphological data recovers a sister group relationship between Doliolidae and Salpidae. Results of cox1 analyses are incongruent with both the 18S rDNA and the morphological phylogenies. Cox1 sequences may evolve too rapidly to resolve relationships of higher tunicate taxa. However, the cox1 data may be useful at lower taxonomic levels.  相似文献   

12.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

13.
Stunt nematodes are characterized by phenotypic plasticity, with overlapping morphology and morphometry leading to potential misidentification. Consequently, the application of integrative taxonomic approaches is useful to species delimitation based on a combination of different perspectives, e.g. morphology and DNA sequences. We conducted nematode surveys in cultivated and natural environments in Spain and the USA, from which we identified 18 known species of the family Telotylenchidae and two new taxa within the studied samples. These species were morphologically, morphometrically, and molecularly characterized. The results of light and scanning electron microscopic observations, and molecular and phylogenetic analysis also allowed two new species to be distinguished, described herein as B itylenchus hispaniensis sp. nov. and T ylenchorhynchus mediterraneus sp. nov. The phylogenetic analysis was carried out using molecular data from nuclear ribosomal DNA genes [D2–D3 expansion segments of the large ribosomal subunit (28S), internal transcribed spacer (ITS), and partial small ribosomal subunit (18S)]. We also provide here a test of alternative hypotheses that confirms the monophyly of both Tylenchorhynchus and Bitylenchus sensu Siddiqi's classification but does not support Fortuner & Luc's conceptual view of Tylenchorhynchus as a large genus. Ancestral state reconstructions of several diagnostic morphological characters using a maximum parsimony approach showed congruence in morphological and molecular evolution for stylet knob inclination and tail tip annulation. Our analysis emphasizes some of the problems related to the taxonomy and phylogeny of nematodes of Telotylenchinae. © 2014 The Linnean Society of London  相似文献   

14.
The reconstruction of phylogenetic history is predicated on being able to accurately establish hypotheses of character homology, which involves sequence alignment for studies based on molecular sequence data. In an empirical study investigating nucleotide sequence alignment, we inferred phylogenetic trees for 43 species of the Apicomplexa and 3 of Dinozoa based on complete small-subunit rDNA sequences, using six different multiple-alignment procedures: manual alignment based on the secondary structure of the 18S rRNA molecule, and automated similarity-based alignment algorithms using the PileUp, ClustalW, TreeAlign, MALIGN, and SAM computer programs. Trees were constructed using neighboring-joining, weighted-parsimony, and maximum- likelihood methods. All of the multiple sequence alignment procedures yielded the same basic structure for the estimate of the phylogenetic relationship among the taxa, which presumably represents the underlying phylogenetic signal. However, the placement of many of the taxa was sensitive to the alignment procedure used; and the different alignments produced trees that were on average more dissimilar from each other than did the different tree-building methods used. The multiple alignments from the different procedures varied greatly in length, but aligned sequence length was not a good predictor of the similarity of the resulting phylogenetic trees. We also systematically varied the gap weights (the relative cost of inserting a new gap into a sequence or extending an already-existing gap) for the ClustalW program, and this produced alignments that were at least as different from each other as those produced by the different alignment algorithms. Furthermore, there was no combination of gap weights that produced the same tree as that from the structure alignment, in spite of the fact that many of the alignments were similar in length to the structure alignment. We also investigated the phylogenetic information content of the helical and nonhelical regions of the rDNA, and conclude that the helical regions are the most informative. We therefore conclude that many of the literature disagreements concerning the phylogeny of the Apicomplexa are probably based on differences in sequence alignment strategies rather than differences in data or tree-building methods.   相似文献   

15.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

16.
Parergodrilidae and Hrabeiella periglandulata are Annelida showing different combinations of clitellate-like and aclitellate characters. Similarities between both of these taxa and Clitellata have widely been regarded as the result of convergent evolution due to similar selection pressures. The position of the three taxa in the phylogenetic system of Annelida is still in debate. However, in analyses based on 18S rDNA sequences a close relationship of Parergodrilidae with Orbiniidae and Questidae was suggested. To infer their phylogeny the sequences of the 28S rDNA and of the cytochrome oxidase I (COI) gene of Stygocapitella subterranea , Parergodrilus heideri and H. periglandulata were determined. The data were extended by sequences of various species including species from Clitellata and Orbiniidae. Prior to tree reconstruction the dataset was analysed in detail for phylogenetic content by applying a sliding window analysis, a likelihood mapping and Modeltest V.3.04. Subsequently, generalized parsimony and maximum likelihood methods were employed. Clade robustness was estimated by bootstrapping. In addition, combined analyses of the sequences of 18S rDNA and 28S rDNA as well as of 18S rDNA, 28S rDNA and COI were performed. The combination of the data of the two structure genes and a mitochondrial gene improved the resolution obtained with the single datasets slightly. These analyses support a close relationship of Parergodrilidae and Orbiniidae but cannot resolve the position of H. periglandulata . In every analysis Clitellata cluster within 'Polychaeta', confirming previous investigations.  相似文献   

17.
The phylogenetic position of the slime-mould genus Lamproderma (Myxomycetes, Amoebozoa) challenges traditional taxonomy: although it displays the typical characters of the order Stemonitales, it appears to be sister to Physarales. This study provides a small subunit (18S or SSU) ribosomal RNA gene-based phylogeny of Lamproderma and its allies, with new sequences from 49 specimens in 12 genera. We found that the order Stemonitales and Lamproderma were both ancestral to Physarales and that Lamproderma constitutes several clades intermingled with species of Diacheopsis, Colloderma and Elaeomyxa. We suggest that these genera may have evolved from Lamproderma by multiple losses of fruiting body stalks and that many taxonomic revisions are needed. We found such high genetic diversity within three Lamproderma species that they probably consist of clusters of sibling species. We discuss the contrasts between genetic and morphological divergence and implications for the morphospecies concept, highlighting the phylogenetically most reliable morphological characters and pointing to others that have been overestimated. In addition, we showed that the first part (~600 bases) of the SSU rDNA gene is a valuable tool for phylogeny in Myxomycetes, since it displayed sufficient variability to distinguish closely related taxa and never failed to cluster together specimens considered of the same species.  相似文献   

18.
We describe a riboprinting scheme for identification of unknown Acanthamoeba isolates at the species level. It involved the use of PCR-RFLP of small subunit ribosomal RNA gene (riboprint) of 24 reference strains by 4 kinds of restriction enzymes. Seven strains in morphological group I and III were identified at species level with their unique sizes of PCR product and riboprint type by Rsa I. Unique RFCP of 17 strains in group II by Dde I, Taq I and Hae III were classified into: (1) four taxa that were identifiable at the species level, (2) a subgroup of 4 taxa and a pair of 2 taxa that were identical with each other, and (3) a species complex of 7 taxa assigned to A. castellanii complex that were closely related. These results were consistent with those obtained by 18s rDNA sequence analysis. This approach provides an alternative to the rDNA sequencing for rapid identification of a new clinical isolate or a large number of environmental isolates of Acanthamoeba.  相似文献   

19.
The taxonomic rank and phylogenetic relationships of the pipizine flower flies (Diptera: Syrphidae: Pipizini) were estimated based on DNA sequence data from three gene regions (COI, 28S and 18S) and 111 adult morphological characters. Pipizini has been treated as a member of the subfamily Eristalinae based on diagnostic adult morphological characteristics, while the larval feeding mode and morphology is shared with members of the subfamily Syrphinae. We analysed each dataset, both separately and combined, in a total evidence approach under maximum parsimony and maximum likelihood. To evaluate the influence of different alignment strategies of rDNA 28S and 18S genes on the resulting topologies, we compared the topologies inferred from a multiple alignment using fast Fourier transform (MAFFT) program with those topologies resulting from aligning the secondary structure of these rDNA genes. Total evidence analyses resolved pipizines as a sister group of the subfamily Syrphinae. Although the structural alignment and the MAFFT alignment differed in the inferred relationships of some clades and taxa, there was congruence in the placement of pipizines. The homogeneous morphology of the Pipizini clade in combination with their unique combination of characters among the Syrphidae suggest a change of rank to subfamily. Thus, we propose to divide Syrphidae into four subfamilies, including the subfamily Pipizinae stat. rev.  相似文献   

20.
Internal transcribed spacer 1 sequences were used to infer phylogenetic relationships among 8 of the 9 described species and one putative species of the entomopathogenic nematode genus Heterorhabditis. Sequences were aligned and optimized based on pairwise genetic distance and parsimony criteria and subjected to a variety of sequence alignment parameters. Phylogenetic trees were constructed with maximum parsimony, cladistic, distance, and maximum likelihood algorithms. Our results gave strong support for four pairs of sister species, while relationships between these pairs also were resolved but less well supported. The ITS1 region of the nuclear ribosomal repeat was a reliable source of homologous characters for resolving relationships between closely related taxa but provided more tenuous resolution among more divergent lineages. A high degree of sequence identity and lack of autapomorphic characters suggest that sister species pairs within three distinct lineages may be mutually conspecific. Application of these molecular data and current morphological knowledge to the delimitation of species is hindered by an incomplete understanding of their variability in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号