首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Use of resistant cultivars is one of the major tactics for combating soybean cyst nematode, Heterodera glycines Ichinohe, which is the most destructive pathogen affecting soybean seed production. However, developing new H. glycines-resistant soybean cultivars is a very labor-intensive process, partially due to the lack of a quick method for counting the H. glycines females that develop on soybean roots. We have developed a fluorescence image-based system for counting females on excised seedling roots cultured on nutrient media in petri dishes. In this system, the females fluoresced when exposed to a wavelength of 570 nm. The fluorescent images were captured with a digital camera, transferred to a computer, and displayed on a monitor. The image of an entire sample was viewed at once, and the fluorescing females were counted manually. This system significantly improved the efficiency and accuracy of counting females developed on cultured seedling roots compared to a microscope counting method. The potential for applications in the screening of nematode-resistant crops is discussed.  相似文献   

2.
The number of resistance genes in soybean to soybean cyst nematode (SCN) Heterodera glycines was estimated using progeny from a cross of ''Williams 82'' x ''Hartwig'' (derived from ''Forrest''³ x PI 437.654) screened with a fourth-generation inbred nematode line derived from a race 3 field population of SCN. Numbers of females developing on roots of inoculated seedlings were assigned to phenotype cells (resistant, susceptible, or segregating) using Ward''s minimum variance cluster analysis. The ratio obtained from screening 220 F₃ soybean families was not significantly different from a 1:8:7 (resistant:segregating:susceptible) ratio, suggesting a two-gene system for resistance. The ratio obtained from screening 183 F₂ plants was not significantly different from a 3:13 (resistant:susceptible) ratio, indicating both a dominant (Rhg) and a recessive (rhg) resistance gene.  相似文献   

3.
Integrating remote sensing and geographic information systems (GIS) technologies offers tremendous opportunities for farmers to more cost effectively manage the causes of crop stress. Initial soybean cyst nematode (SCN) population densities from 995 2-×-3-m quadrats were obtained from a soybean field near Ames, Iowa, in 2000. The percentage of sunlight reflected from each quadrat was measured weekly using a multispectral radiometer beginning in mid-May and continuing through mid-September. Aerial images were obtained at heights above the field ranging from 45 to 425 m on 12 dates during the soybean growing season. This was accomplished using color film and infrared film in conjunction with a filter to measure reflectance in the near-infrared region (810 nm). Satellite images (Landsat 7) were obtained for five dates during the 2000 growing season. Maps depicting initial SCN population densities, soybean yield, soy oil, and soy protein were generated using the GIS software program ArcView. Percentage reflectance (810 nm), aerial image intensity, and satellite image intensity data then were regressed against soybean yield, soy oil, and soy protein concentrations obtained from each geospatially referenced soybean quadrat. Percentage reflectance measurements explained up to 60% of the variation in initial SCN population densities within soybean quadrats and up to 91% of the variation in soybean yield. Aerial image and satellite image intensities explained up to 80% and 47% of the variation in soybean yield, respectively. Percentage reflectance data also explained 36% and 54% of the variation in oil and protein concentrations of the harvested soybeans, respectively. These results indicate that remote sensing coupled with GIS technologies may provide new tools to detect and quantify SCN population densities and their impacts on the quantity and quality of soybean yield.  相似文献   

4.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

5.
Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.  相似文献   

6.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

7.
The soybean cyst nematode (SCN), Heterodera glycines, can cause significant reductions in soybean yield and quality in many parts of the world. Natural biological control may play an important role in regulating SCN population. In this study the bacterial communities associated with SCN cysts obtained from fields under different lengths of soybean monoculture were explored. Soil samples were collected in 2010 and 2011 from six fields that had been used for soybean monoculture for 2 to 41 yr. SCN population densities were determined and bacterial communities from SCN cysts were investigated by Biolog and PCR-DGGE methods. SCN population densities initially increased in the first 5 yr of soybean monoculture but then declined steeply as years of soybean monoculture increased. Catabolic diversity of bacterial communities associated with cysts tended to decline as number of years of monoculture increased. Some specific PCR-DGGE bands, mainly representing Streptomyces and Rhizobium, were obtained from the cysts collected from the long-term monoculture fields. Principal component analysis of Biolog and PCR-DGGE data revealed that bacterial communities associated with cysts could be divided into two groups: those from cysts obtained from shorter (< 8 yr) vs. longer (> 8 yr) monoculture. This research demonstrates that the composition of the bacterial communities obtained from SCN cysts changes with length of soybean monoculture; the suppressive impact of these bacterial communities to SCN is yet to be determined.  相似文献   

8.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

9.
Population dynamics of Heterodera glycines (SCN) were influenced by initial nematode population density in soil, soybean root growth pattern, soil type, and environmental conditions in two field experiments. Low initial populations (Pi) of SCN increased more rapidly during the growing season than high Pi and resulted in greater numbers of nematodes at harvest. Egg and juvenile (J2) populations increased within 2-6 weeks after planting when early-season soil temperatures were 20 C and above and were delayed by soil temperatures of 17 C or below in May and early June. Frequencies of occurrence and number of nematodes decreased with increasing depth and distance from center of the soybean row. Spatial pattern of SCN paralleled that of soybean roots. Higher clay content in the subsoil 30-45 cm deep in one field restricted soil penetration by roots, indirectly influencing vertical distribution of SCN. Shoot dry weight was a good indicator of the effect of SCN on seed yield. Root dry weight was poorly correlated with soybean growth and yield. The relationship of yield (seed weight) to Pi was best described by a quadratic equation at one site, but did not fit any regression model tested at the second site.  相似文献   

10.
The soybean cyst nematode Heterodera glycines (SCN) is of major economic importance and widely distributed throughout soybean production regions of the United States where different maturity groups with the same sources of SCN resistance are grown. The objective of this study was to assess SCN-resistant and -susceptible soybean yield responses in infested soils across the north-central region. In 1994 and 1995, eight SCN-resistant and eight SCN-susceptible public soybean cultivars representing maturity groups (MG) I to IV were planted in 63 fields, either infested or noninfested, in 10 states in the north-central United States. Soil samples were taken to determine initial SCN population density and race, and soil classification. Data were grouped for analysis by adaptation based on MG zones. Soybean yields were 658 to 3,840 kg/ha across the sites. Soybean cyst nematode-resistant cultivars yielded better at SCN-infested sites but lost this superiority to susceptible soybean cultivars at noninfested sites. Interactions were observed among initial SCN population density, cultivar, and location. This study showed that no region-wide predictive equations could be developed for yield loss based on initial nematode populations in the soil and that yield loss due to SCN in our region was greatly confounded by other stress factors, which included temperature and moisture extremes.  相似文献   

11.
A lack of diversity and durability of resistant soybean varieties complicates management of the soybean cyst nematode (SCN), Heterodera glycines, exemplified by the current overdependence on the PI 88788 source of resistance. Of interest is the effect of adaptation of a SCN population to a source of resistance on its subsequent ability to develop on others. Female indices (FI) from virulence assays (race, HG Type and SCN Type tests) for SCN field populations and inbred lines were analyzed. Female indices on PI 88788, PI 209332 and PI 548316 were highly correlated, as were those of PI 548402, PI 90763, PI 89772 and PI 438489B. Previous studies on resistant SCN-infected soybean roots indicated that the cellular resistance response was similar within these two groups of soybean genotypes. In field populations, highly significant correlations were also found between FI on PI 88788 and PI 548402 and those on PI 89772 and PI 437654. In inbred lines, FI on PI 437654 were correlated with PI 90763 and PI 438489B. To avoid further adaptation, rotation of cultivars with resistance from these groups should be carefully monitored, including those from the most promising source of resistance, PI 437654, such as CystX. In a separate test, 10 soybean varieties developed from CystX were tested against HG Type 0, HG Type 2.5.7 and HG Type 1–7. Female development occurred in all tests but one. Although identification and deployment of unique resistance is needed, management strategies to prevent and detect adaptation should be emphasized.  相似文献   

12.
Soil texture has been commonly associated with the population density of Heterodera glycines (soybean cyst nematode: SCN), but such an association has been mainly described in terms of textural classes. In this study, multivariate analysis and a generalized linear modeling approach were used to elucidate the quantitative relationship of soil texture with the observed SCN population density reduction after annual corn rotation in Nebraska. Forty-five commercial production fields were sampled in 2009, 2010, and 2011 and SCN population density (eggs/100 cm3 of soil) for each field was determined before (Pi) and after (Pf) annual corn rotation from ten 3 × 3-m sampling grids. Principal components analysis revealed that, compared with silt and clay, sand had a stronger association with SCN Pi and Pf. Cluster analysis using the average linkage method and confirmed through 1,000 bootstrap simulations identified two groups: one corresponding to predominant silt-and-clay fields and other to sand-predominant fields. This grouping suggested that SCN relative percent population decline was higher in the sandy than in the silt-and-clay predominant group. However, when groups were compared for their SCN population density reduction using Pf as the response, Pi as a covariate, and incorporating the year and field variability, a negative binomial generalized linear model indicated that the SCN population density reduction was not statistically different between the sand-predominant field group and the silt-and-clay predominant group.  相似文献   

13.
Fifty-four susceptible soybean, Glycine max, cultivars or plant introductions were evaluated for tolerance to H. glycines, the soybean cyst nematode (SCN). Seed yields of genotypes were compared in nematicide-treated (1,2-dibromo-3-chloropropane, 58 kg a.i./ha) and nontreated plots at two SCN-infested locations over 3 years. Distinct and consistent levels of tolerance to SCN were observed among soybean genotypes. PI 97100, an introduction from Korea, exhibited the highest level of tolerance with an average tolerance index ([yield in nontreated plot ÷ yield in nematicide-treated plot] × 100) of 96 over 2 years. Coker 156 and Wright had moderate levels of tolerance (range in index values 68 to 95) compared to the intolerant cuhivars Bragg and Coker 237 (range in index values 33 to 68). Most of the soybean genotypes evaluated were intolerant to SCN. The rankings of five genotypes for tolerance to SCN and Hoplolaimus columbus were similar. Tolerance for seed yield was more consistently correlated with tolerance for plant height (r = 0.55 to 0.64) than for seed weight (r = 0.23 to 0.65) among genotypes.  相似文献   

14.
Three monodonal antibodies (MAbs) that bound to secretory granules within the subventral esophageal glands of second-stage juveniles (J2) of the soybean cyst nematode (SCN), Heterodera glycines, were developed from intrasplenic immunizations of a mouse with homogenates of SCN J2. Two MAbs to the secretory granules within subventral glands and one MAb to granules within the dorsal esophageal gland of SCN J2 were developed by intrasplenic immunizations with J2 stylet secretions. Stylet secretions, produced in vitro by incubating SCN J2 in 5-methoxy DMT oxalate, were solubilized with a high pH buffer and concentrated for use as antigen. Three of the five MAbs specific to the subventral esophageal glands bound to stylet secretions from SCN J2 in immunofluorescence and ELISA assays. Two of these three MAbs also bound to secretory granules within both the dorsal and subventral esophageal glands of young SCN females. All five of the subventral gland MAbs bound to the subventral glands of Heterodera schachtii and one bound to the subventral glands of Globodera tabacum, but none bound to any structures in Meloidogyne incognita or Caenorhabditis elegans.  相似文献   

15.
Soybean root cells undergo dramatic morphological and biochemical changes during the establishment of a feeding site in a compatible interaction with the soybean cyst nematode (SCN). We constructed a cDNA microarray with approximately 1,300 cDNA inserts targeted to identify differentially expressed genes during the compatible interaction of SCN with soybean roots 2 days after infection. Three independent biological replicates were grown and inoculated with SCN, and 2 days later RNA was extracted for hybridization to microarrays and compared to noninoculated controls. Statistical analysis indicated that approximately 8% of the genes monitored were induced and more than 50% of these were genes of unknown function. Notable genes that were more highly expressed 2 days after inoculation with SCN as compared to noninoculated roots included the repetitive proline-rich glycoprotein, the stress-induced gene SAM22, ß-1,3-endoglucanase, peroxidase, and those involved in carbohydrate metabolism, plant defense, and signaling.  相似文献   

16.
Nabis roseipennis Reuter nymphs demonstrated a preference for nuclear polyhedrosis virus (NPV) — infected over healthyAnticarsia gemmatalis Hübner larvae when offered a choice of larval prey in Petri dishes and on soybean. In Petri dishes, small (second-third instar) and large (fifth-sixth instar) nymphs attacked a significantly greater number of diseased than healthy larvae at all larval instars tested (first-fifth instars) and exposure periods (2, 5 and 24 h), except that at 2 h the number of 1st and 3rd instar larvae attacked by large nymphs did not differ significantly (P≤0.05). Nabis roseipennis caged with larvae on individual soybean plants in the greenhouse resulted in a generally low percentage of attack by small and large nymphs after 2 days, ranging from 5.6 to 36.7%. As in the Petri dishes, the nabids showed a significant preference for diseased larvae over healthy larvae attacked for all nabid and larval sizes on soybean, with the percentage of diseased larvae attacked ranging from 28.0 to 65.4% (P≤0.05). This preference for diseased larvae on soybean as well as in Petri dishes demonstrates that the preference was not due to the close proximity in which the host and prey were found in the Petri dishes. The preference for diseased larvae may be due to a reduction in a defensive response in late stages of disease. This material is based upon work supported in part by USDA Grant No. 83-CRCR-1-1212.  相似文献   

17.
Although the soybean cyst nematode (SCN), Heterodera glycines, has been known to exist in Wisconsin for at least 14 years, relatively few growers sample for SCN or use host resistance as a means to manage this nematode. The benefit of planting the SCN-resistant cultivar Bell on a sandy soil in Wisconsin was evaluated in 1992 and 1993. A range of SCN population densities was achieved by planting 11 crops with varying degrees of susceptibility for 1 or 2 years before the evaluation. Averaged over nematode population densities, yield of ''Bell'' was 30 to 43% greater than that of the susceptible cultivars, ''Corsoy 79'' and ''BSR 101''. Counts of cysts collected the fall preceding soybean were more predictive of yield than counts taken at planting. Yields of all three cultivars were negatively related (P < 0.001) to cyst populations. Fewer (P < 0.01) eggs were produced on ''Bell'' than on the susceptible cultivars. The annual (fall to fall) change in cyst population densities was dependent on initial nematode density for all cultivars in 1992 and for the susceptible cultivars in 1993. Yield reductions induced by the SCN under the conditions of this study indicate that planting a SCN-resistant cultivar in Wisconsin can be beneficial if any cysts are detected.  相似文献   

18.
19.
Currently there are 16 possible races for Heterodera glycines, and these are differentiated based on ability of a nematode population to develop on a set of four differential soybean genotypes. Because results are based on numbers of nematode females that develop to a specific stage rather than on the reproductive capability of these females, race determinations based on female indices may not represent results obtained after several reproductive cycles of H. glycines. Counting numbers of eggs and juveniles, and then developing corresponding indices, would allow reproduction to be considered in making race determinations. Our objectives were to compare the present race identification scheme for H. glycines based on female indices with those using egg and juvenile indices and to examine the effect of temperature on race designations using female, egg, and juvenile indices. Race designations for H. glycines populations from two locations in Illinois were determined at 20, 27, and 30 °C in a water bath. The numbers of females, eggs, and juveniles (at 19 days) were recorded, and an index based on each life stage was calculated. Race determinations based on female, egg, or juvenile indices were inconsistent when conducted at 20 °C, which demonstrates that this temperature is not suitable for identifying races of H. glycines. However race designations at 27 and 30 °C were consistent for all three indices. This indicates that counting females, eggs, or juveniles should be equally reliable when race determinations are conducted at these two temperatures, and choice of method would depend on investigator preference or research objective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号