首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Constitutive expression of mRNA was seen for the vesicular glutamate transporter brain-specific Na(+)-dependent inorganic phosphate cotransporter (BNPI), but not differentiation-associated Na(+)-dependent inorganic phosphate cotransporter, in rat calvarial osteoblasts cultured for 7 and 21 days in vitro (DIV). Three different agonists for ionotropic glutamate receptors (iGluR) at 1mM, as well as 50mM KCl, significantly increased the release of endogenous L-glutamate from osteoblasts cultured for 7DIV when determined 5 min after the addition by using a high performance liquid chromatograph. The inhibitor of desensitization of DL-alpha-amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA) receptors cyclothiazide significantly potentiated and prolonged the release of endogenous L-glutamate evoked by AMPA in a dose-dependent manner. The release evoked by AMPA was significantly prevented by the addition of an AMPA receptor antagonist as well as by the removal of Ca(2+) ions. These results suggest that endogenous L-glutamate could be released from intracellular vesicular constituents associated with BNPI through activation of particular iGluR subtypes expressed in cultured rat calvarial osteoblasts.  相似文献   

2.
Ionotropic glutamate receptors are essential for fast synaptic nerve transmission. Recent x-ray structures for the ligand-binding (S1S2) region of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptor have suggested how differences in protein/ligand interactions may determine whether a ligand will behave as a full agonist. We have used multiple molecular dynamics simulations of 2-5 ns duration to explore the structural dynamics of GluR2 S1S2 in the presence and absence of glutamate and in a complex with kainate. Our studies indicate that not only is the degree of domain closure dependent upon interactions with the ligand, but also that protein/ligand interactions influence the motion of the S2 domain with respect to S1. Differences in domain mobility between the three states (apo-S1S2, glutamate-bound, and kainate-bound) are surprisingly clear-cut. We discuss how these changes in dynamics may provide an explanation relating the mechanism of transmission of the agonist-binding event to channel opening. We also show here how the glutamate may adopt an alternative mode of binding not seen in the x-ray structure, which involves a key threonine (T480) side chain flipping into a new conformation. This new conformation results in an altered pattern of hydrogen bonding at the agonist-binding site.  相似文献   

3.
Glutamate receptor phosphorylation has been implicated in several forms of modulation of synaptic transmission. It has been reported that protein kinase A (PKA) can phosphorylate the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR4 on Ser842, both in vitro and in vivo. Here, we studied the regulation of GluR4 phosphorylation and intracellular trafficking by PKA and by metabotropic receptors coupled to adenylyl cyclase (AC), in cultured chick retinal amacrine-like neurones, which are enriched in GluR4. The regulation of AMPA receptor activity by PKA and by metabotropic AC-coupled receptors was also investigated by measuring the [Ca2+]i response to kainate in Na(+)-free medium. Stimulation of AC with forskolin (FSK), or using the selective agonist of dopamine D1 receptors (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF38393), increased the [Ca2+]i response to kainate, GluR4 phosphorylation at Ser842 and GluR4 surface expression. Pre-incubation of the cells with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV), an agonist of group II metabotropic glutamate receptors (mGluR), which are coupled to inhibition of AC, inhibited the effect of FSK and of SKF38393 on AMPA receptor activity, GluR4 phosphorylation and expression at the plasma membrane. These results indicate that there is a functional cross-talk between dopamine D1 receptors and group II mGluR in the regulation of GluR4 phosphorylation and AMPA receptor activity. Our data show that GluR4 phosphorylation at Ser842 by PKA, and its recruitment to the plasma membrane upon phosphorylation, is regulated by metabotropic receptors.  相似文献   

4.
5.
Abstract: The surface expression of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor (GluR) subunits GluR1, GluR2, and GluR4 was studied in cultures of stably transfected baby hamster kidney (BHK)-570 cells. Two methods were used to quantify surface expression: cross-linking with the membrane-impermeant reagent bis(sulfosuccinimidyl)suberate (BS3) and labeling of surface receptors with the membrane-impermeant biotinylating reagent sulfosuccinimidyl 2-(biotinamido)ethyl-1,3-dithiopropionate (NHS-ss-biotin) followed by precipitation with neutravidin beads. Western blot analyses of control versus treated cultures revealed that, for all three GluR subunits examined, 25–40% of the total GluR population is located in the plasma membrane of the BHK-570 cells. This finding was corroborated by analyses of the surface expression of [3H]AMPA binding sites in the GluR-expressing BHK-570 cells performed via the biotinylation/precipitation method; these studies revealed that 30–40% of the total binding site population is found in the plasma membrane. Analyses of combinations of the subunits, both GluR1 + GluR2 and GluR2 + GluR4, revealed that heteromeric combinations of the subunits are not trafficked to the surface more efficiently than homomeric receptors. For each of the three subunits, western blots revealed two distinct bands; removal of surface receptors reduced immunoreactivity for the upper band of each subunit by >90%, whereas immunoreactivity for the lower band was reduced by only 10–20%. Treatment of extracts from the various cell lines with glycopeptidase F resulted in the collapse of the two bands into a single band of lower molecular weight, suggesting that the two original bands represent differentially glycosylated forms of the same polypeptides. These data indicate that the majority of the stably expressed GluR subunits in these cell lines are incompletely glycosylated and that complete glycosylation is associated with trafficking of the GluR subunits to the cell surface.  相似文献   

6.
Autoantibodies to the GluR3-subtype of AMPA/glutamate receptors are found in the sera and cerebrospinal fluid of some individuals with epilepsy. They could possibly play a role in the pathophysiology of epilepsy since anti-GluR3 sera display glutamatergic agonist activity. We have investigated here the ability of affinity-purified antibodies (Abs) directed against the immunogenic peptide GluR3B (amino-acid 372–395) to interact with and activate recombinant GluR3-receptor channels expressed by Xenopus oocytes. We report here that the affinity-purified anti-GluR3B Abs directly activate GluR3-containing homomeric and heteromeric AMPA receptor complexes without the requirement of neuronal, glial or blood ancillary molecules. We present some of the properties of the purified anti-GluR3B Abs and discuss the possible physiological or pathological consequences of their activation of glutamate receptors.  相似文献   

7.
Quinazoline-2,4-diones with a sulfonamide group attached to the N(3) ring atom constitute a novel class of competitive AMPA receptor antagonists. One of the synthesized compounds, 28, shows nanomolar receptor affinity, whereas other examples of the series display oral anticonvulsant activity in animal models.  相似文献   

8.
Sphingosine 1-phosphate (S1P), a bioactive lipid generated by sphingosine kinases (SphK1/2), initiates different signalling pathways involved in physiological and pathological processes. We previously demonstrated that in rat myometrium at late (day 19) gestation, SphK1 increases the expression of COX2 via S1P generation and release. In rat uterine leiomyoma cells (ELT3), SphK1/S1P axis controls survival and proliferation. In the present study we demonstrate that PDBu activates SphK1 but not SphK2. SphK1 activation requires PKC and MAPK ERK1/2. S1P produced by PDBu is released in the medium. PDBu-induced S1P export is abolished by Ro-318220 and BIM (PKC inhibitors), by U0126 and PD98059 (MEK inhibitors), SKI-II (SphKI/2 inhibitor) and SphK1-siRNA, suggesting the involvement of PKC, ERK and SphK1 respectively. The release of S1P is insensitive to inhibitors of ATP Binding Cassette (ABC)A1 and ABCB1 transporters, but is abolished when ABCC1 transporters are inhibited by MK571 or down-regulated by ABCC1-siRNA. PDBu increases COX2 expression that is blocked by the inhibition of PKC, ERK1/2, SphK1, and when cells are treated with MK571 or transfected with ABCC1-siRNA. The induction of COX2 by the S1P release due to PDBu or by exogenous S1P involves S1P2 receptors coupled to Gi. In myometrium from rat at late gestation, the release of S1P is also strongly reduced when SphK and ABCC1 are inhibited. The data reveal that in rat leiomyoma cells and late pregnant rat myometrium, the release of S1P involves a similar signalling pathway and occurs through ABCC1.  相似文献   

9.
Humans and laboratory animals remain highly vulnerable to relapse to cocaine-seeking after prolonged periods of withdrawal from the drug. It has been hypothesized that this persistent cocaine relapse vulnerability involves drug-induced alterations in glutamatergic synapses within the mesolimbic dopamine reward system. Previous studies have shown that cocaine self-administration induces long-lasting neuroadaptations in glutamate neurons of the ventral tegmental area and nucleus accumbens. Here, we determined the effect of cocaine self-administration and subsequent withdrawal on glutamate receptor expression in the amygdala, a component of the mesolimbic dopamine system that is involved in cocaine seeking and craving induced by drug-associated cues. Rats were trained for 10 days to self-administer intravenous cocaine (6 h/day) or saline (a control condition) and were killed after one or 30 withdrawal days. Basolateral and central amygdala tissues were assayed for protein expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits (GluR1 and GluR2) and the NMDA receptor subunits (NR1, NR2A and NR2B). In the basolateral amygdala, GluR1 but not GluR2 levels were increased on days 1 and 30, NR2A levels were increased on day 1, and NR2B levels were decreased on day 30 of withdrawal from cocaine. In the central amygdala, GluR2 but not GluR1 levels were increased on days 1 and 30, NR1 levels were increased on day 30 and NR2A or NR2B levels were not altered after withdrawal from cocaine. These results indicate that cocaine self-administration and subsequent withdrawal induces long-lasting and differential neuroadaptations in basolateral and central amygdala glutamate receptors.  相似文献   

10.
Adenosine, through A2A receptor (A2AR) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A2AR on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K+-evoked [3H]glutamate release and inhibited the K+-evoked [3H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A2AR since for both neurotransmitters, the BDNF action was blocked by the A2AR antagonist SCH 58261 (50 nM). In the presence of the A2AR agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A2AR by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A2AR.  相似文献   

11.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

12.
A series of N-propyl-8-chloro-6-substituted isoquinolones was identified as positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2 PAM) via high throughput screening (HTS). The subsequent synthesis and initial SAR exploration that led to the identification of compound 28 is described.  相似文献   

13.
Chizh BA 《Amino acids》2002,23(1-3):169-176
Summary.  Glutamatergic mechanisms are implicated in acute and chronic pain, and there is a great diversity of glutamate receptors that can be used as targets for novel analgesics. Some approaches, e.g. NMDA receptor antagonism, have been validated clinically, however, the central side-effects have remained the main problem with most compounds. Recently, some novel approaches have been explored as new compounds targeting some modulatory sites at the NMDA receptor (glycineB and NR2B-subtype selective antagonists), as well as kainate and metabotropic glutamate receptors, have been discovered. Many of these compounds have demonstrated efficacy in animal models of chronic pain, and some of them appear to have a reduced side-effect liability compared to clinically tested NMDA antagonists. These recent advances are reviewed in the present work. Received July 6, 2001 Accepted August 6, 2001 Published online June 26, 2002  相似文献   

14.
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function.  相似文献   

15.
Preconditioning of the cerebral cortex was induced in mice by repeated cortical spreading depression (CSD), and the major ionotropic glutamate (GluRs) and nicotinic acetylcholine receptor (nAChRs) subunits were compared by quantitative immunoblotting between sham- and preconditioned cortex, 24 h after treatment. A 30% reduction in alpha-amino-3-hydroxy-5-methyl-4-iso- xazolepropionate (AMPA) GluR1 and 2 subunit immunoreactivities was observed in the preconditioned cortex (p < 0.03), but there was no significant change in the NMDA receptor subunits, NR1, NR2A and NR2B. A 12-15-fold increase in alpha7 nAChR subunit expression following in vivo CSD (p < 0.001) was by far the most remarkable change associated with preconditioning. In contrast, the alpha4 nAChR subunit was not altered. These data point to the alpha7 nAChR as a potential new target for neuroprotection because preconditioning increases consistently the tolerance of the brain to acute insults such as ischaemia. These data complement recent studies implicating alpha7 nAChR overexpression in the amelioration of chronic neuropathologies, notably Alzheimer's disease (AD).  相似文献   

16.
17.
We describe here the discovery and biological profile of a series of isoindolinone derivatives as developed mGluR1 antagonists. Our combined strategy of rapid parallel synthesis and conventional medicinal optimization successfully led to N-cyclopropyl 22 and N-isopropyl isoindolinone analogs 21 and 23 with improved in vivo DMPK profiles. Moreover the most advanced analog 23 showed an oral antipsychotic-like effect at a dose of 1 mg/kg in an animal model.  相似文献   

18.
19.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   

20.
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号