首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary An anion channel of sarcoplasmic reticulum vesicle has been incorporated into planar lipid bilayers by means of a fusion method and its basic properties were investigated. Analysis of fusion processes suggested that one SR vesicle contained approximately one anion channel. The conductance of this channel has several substates and shows a flickering behavior. The occupation probability of each substate was voltage dependent, which induced an inward rectification of macroscopic currents. Further, the anion channel was found to have the following properties. (1) The single-channel conductance is about 200 pS at 100mm Cl. (2) The channel does not select among monovalent anions but SO 4 2– hardly permeates through the channel. (3) SO 4 2– added to thecis side (the side to which SR vesicles were added) inhibits Cl current competitively in a voltage-dependent manner. (4) An analysis of this voltage dependence suggests that the binding site of SO 4 2– is located at about 36% of the way across the channel from thecis entrance.  相似文献   

2.
Summary The gene for the antibacterial peptide colicin B was cloned and transformed into a host background where it was constitutively overexpressed. The purified gene product was biologically active and formed voltage-dependent, ion-conducting channels in planar phospholipid bilayers composed of asolectin. Colicin B channels exhibited two distinct unitary conductance levels, and a slight preference for Na+ over Cl. Kinetic analysis of the voltage-driven opening and closing of colicin channels revealed the existence of at least two conducting states and two nonconducting states of the protein. Both the ion selectivity and the kinetics of colicin B channels were highly dependent on pH. Excess colicin protein was readily removed from the system by perfusing the bilayer, but open channels could be washed out only after they were allowed to close. A monospecific polyclonal antiserum generated against electrophoretically purified colicin B eliminated both the biological and in vitro activity of the protein. Membrane-associated channels, whether open or closed, remained functionally unaffected by the presence of the antiserum. Taken together, our results suggest that the voltage-independent binding of colicin B to the membrane is the rate-limiting step for the formation of ion channels, and that this process is accompanied by a major conformational rearrangement of the protein.  相似文献   

3.
Summary Rat brain microsomal membranes were found to contain high-affinity binding sites for the alkaloid ryanodine (k d 3nm.B max 0.6 pmol per mg protein). Exposure of planar lipid bilayers to microsomal membrane vesicles resulted in the incorporation, apparently by bilayer-vesicle fusion, of at least two types of ion channel. These were selective for Cl and Ca2+, respectively. The reconstituted Ca2+ channels were functionally modified by 1 m ryanodine, which induced a nearly permanently open subconductance state. Unmodified Ca2+ channels had a slope conductance of almost 100 pS in 54mm CaHEPES and a Ca2+/TRIS+ permeability ratio of 11.0. They also conducted other divalent cations (Ba2+>Ca2+>Sr2+>Mg2+) and were markedly activated by ATP and its nonhydrolysable derivative AMPPCP (1mm). Inositol 1,4,5-trisphosphate (1–10 m) partially activated the same channels by increasing their opening rate. Brain microsomes therefore contain ryanodine-sensitive Ca2+ channels, sharing some of the characteristics of Ca2+ channels from striated but not smooth muscle sarcoplasmic reticulum. Evidence is presented to suggest they were incorporated into bilayers following the fusion of endoplasmic reticulum membrane vesicles, and their sensitivity to inositol trisphosphate may be consistent with a role in Ca2+ release from internal membrane stores.  相似文献   

4.
The addition of haemocyanin from Megathura crenulata to the aqueous phase bathing a bilayer lipid membrane resulted in the formation of ionic channels. With an applied voltage biased negative with respect to the haemocyanin-containing side, a single conductance state was observed above pH 7.0. Below pH 7.0 several conductance states were manifested, and the maximum conductance observed for a single channel decreased with decreasing pH. Extensive treatment of the haemocyanin with diethylpyrocarbonate, which reacts primarily with histidine residues, completely prevented the formation of ionic channels; however, milder treatment produced a chemically modified haemocyanin that was capable of forming ionic channels with modified conductance properties. Each channel conductance was typically much lower than that of the channels formed from unmodified haemocyanin, and there was now substantial variation in conductance from channel to channel. Following the use of hydroxylamine to remove the carbethoxy groups from the modified haemocyanin, it formed ionic channels that were restored to the original unit channel conductance.  相似文献   

5.
In order to follow alamethicin diffusion within membranes under conditions of pore-formation, a fluorescein isothiocyanate (FITC) analogue was synthesized. To test the influence of the fluorescent probe addition on the pore-forming activity of the new analogue, macroscopic and single-channel experiments into planar lipid bilayers were performed. Although the apparent mean number of monomers per conducting aggregate was equivalent, the voltage-dependence of the new analogue was slightly reduced and hysteresses were broader, in agreement with the much longer duration of the open single-channels. Thus, the conducting aggregates seem to be stabilized by the introduction of the probe, presumably through the interaction of the conjugated cycles with the lipid headgroups, while the added steric hindrance may account for the slightly higher conductances of the open substates. Lateral diffusion of the labelled peptide associated with the bilayer was then investigated by the fluorescence recovery after photobleaching technique. Under applied voltage, associated with high conductance, D, the lateral diffusion coefficient, was reduced by 50% when compared to peptide at rest. These results provide new independent experimental evidence for a voltage-driven insertion of the highly mobile surface-associated peptide into the bilayer as a prominent step in pore formation.  相似文献   

6.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

7.
Summary Unitary currents through cGMP-dependent channels of retinal rods are observed following incorporation into planar lipid bilayers of native vesicles from purified rod outer segment membranes washed free of soluble and peripheral proteins. The influence of the concentration of cGMP, inhibitors (cis-diltiazem, tetracaine and Ag+) and divalent cations (Ca2+, Mg2+, and Co2+) on the conductance and open probability of the channel is described, as well as the voltage dependence of these effects. The cGMP dependence suggests the existence of four binding sites for cGMP and reveals that sequential binding of four cGMP molecules corresponds to the opening of four discrete conductance levels. Finally, we provide conclusive evidence that activated G-protein does not directly inactivate the cGMP-dependent channels of bovine retinal rods.  相似文献   

8.
The effects of the polyene antibiotic filipin on the conductance and permeability of planar lipid bilayers were investigated under voltage-clamp conditions. The membrane conductance of lipid bilayers containing no cholesterol was not affected by filipin. In the presence of cholesterol containing lipid bilayers, filipin induced a 10(4)-10(5)-fold increase in transmembrane conductance. This conductance increase was dependent on the ionic species present in solution, decreasing in the following order: GCsCl greater than GNaAc greater than GKCl greater than GNaCl greater than CaCl2 greater than GNa2SO4 greater than GBaCl2 greater than GMgCl2. Reversal potential measurements in simple biionic conditions revealed the following relative permeability sequence: PK greater than PCl greater than PNa approximately Pac approximately PBa greater than PCs greater than PMg approximately PCa greater than Psulphate. The filipin-sterol mediated increase in membrane conductance was independent of the membrane potential. The increase in membrane current following a step alteration in membrane potential occurred instantaneously and had no dependence on the previous value of the holding membrane potential. We propose that the filipin-sterol complex forms ion channels in lipid membranes. These channels are found in a single configuration (open state) and select preferentially monovalent cations or anions over divalent ions. Our experimental results are discussed in relation to the effects of other polyene antibiotics on the membrane permeability, and also in relation to experimental problems previously reported with the use of filipin in planar lipid bilayers.  相似文献   

9.
Summary The effects of methylation on the rate constants of carrier-mediated ion transport have been studied on monooleindecane bilayers with K+, Rb+, NH 4 + , and TI+ ions, using the series of homologue carriers, nonactin, monactin, dinactin, trinactin, and tetranactin, each member of the series differing from the previous one by only one methyl group. Measurements of the amplitude and time constant of the current relaxation after a voltage jump over a large domain of voltage and permeant ion concentration, together with a computer curve-fitting procedure, have allowed us, without the help of steady-state current-voltage data, to deduce and compare the values of the various rate constants for ion transport: formation (k Ri) and dissociation (k Di) of the ion-carrier complex at the interface, translocation across the membrane interior of the carrier (k s) and the complex (k is). With the additional information from steady-state low-voltage conductance measurements, we have obtained the value of the aqueous phase-membrane and torus-membrane partition coefficient of the carrier ({ie191-1} and {ie191-2}). From nonactin to tetranactin with the NH 4 + ion,k is, and {ie191-3} are found to increase by factors of 5 and 3, respectively,k Di and {ie191-4} to decrease respectively by factors 8 and 2, whilek Ri andk s are practically invariant. Nearly identical results are found for K+, Rb+, and Tl+ ions.k Ri,k s andk is are quite invariant from one ion to the other except for Tl+ wherek Ri is about five times larger. On the other hand,k Di depends strongly on the ion, indicating that dissociation is the determining step of the ionic selectivity of a given carrier. The systematic variations in the values of the rate constants with increasing methylation are interpreted in terms of modifications of energy barriers induced by the carrier increasing size. Within this framework, we have been able to establish and verify a fundamental relationship between the variations ofk is andk Di with methylation.  相似文献   

10.
Summary Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25–35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.The assistance of A. Mazza and G.A.R. Mealing is gratefully acknowledged. The trypsin-activated, HPLC-purified CryIC toxin isolated from B. thuringiensis var. entomocidus crystal was a kind gift from M. Pusztai, Institute for Biological Sciences, NRC, Ottawa.  相似文献   

11.
Philip J. White 《Planta》1993,191(4):541-551
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A high-conductance cation channel (a maxi cation channel) was characterized from single-channel electrical recordings. The channel was incorporated into the bilayer with its cytoplasmic surface facing the trans compartment and voltages were referenced cis with respect to trans. The channel was permeable to both monovalent and divalent cations. The unitary conductance was 451 pS in symmetrical 100 mM KCl and 213 pS in symmetrical 100 mM BaCl2. The permeability ratio PKPBa was 1.002.56. Unitary conductances declined in the order K+Rb+>Cs+>Na+> Li+ (monovalent cations) and Ba2+>Sr2+>Ca2+> Mg2+>Co2+>Mn2+ (divalent cations). The relative permeabilities of monovalent cations mirrored their conductivity sequence, whereas the permeabilities of all divalent cations were similar. The maxi cation channel showed complex kinetics, exhibiting both voltage- and time-dependent inactivation and voltage-dependent gating. The voltage dependence of the kinetics shifted in parallel with changes in the reversal potential of the channel. In symmetrical 100 mM KCl, following a voltage step from zero to the test voltage, the channel inactivated and the active-channel lifetime ( i) shortened exponentially as the test voltage was increased. The channel always opened immediately upon depolarization to zero volts, indicating that inactivation of the channel did not result from the loss of any intrinsic factor. The probability of finding an active channel in the open state (P0) exhibited a bell-shaped relationship with membrane potential. At voltages between -40 and 80 mV, P0 exceeded 0.99, but p0 declined abruptly at more extreme voltages. Under ionic conditions which approximated physiological conditions, in the presence of 100 mM KCl on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side, the reversal potential was 15.6 mV and the kinetics approximated those observed in symmetrical 100 mM KCl. Thus, the channel would open upon depolarization of the plasma membrane in vivo. If the channel functioned physiologically as a Ca2+ channel it might be involved in intracellular signalling: the channel could open in response to a variety of environmental, developmental and pathological stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and thereby initiating a physiological response.Abbreviations EK Nernst (equilibrium) potential for potassium - Erev zero-current (reversal) potential - I/V current/voltage - c apparent mean lifetime of the activated-channel closed state - i apparent mean lifetime of the activated channel following a voltage step from zero volts - 0 apparent mean lifetime of the activated-channel open state - PE 1-palmitoyl-2-oleoyl phosphatidylethonlamine - P0 probability of finding the activated channel in an open state - TEA+ tetraethylammonium This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge, UK).  相似文献   

12.
Summary Monoolein lipid bilayers were formed using a monolayer transfer technique and from dispersions of monoolein in squalene, triolein, 1-chlorodecane and 1-bromodecane. Measurements of optical reflectance and electrical capacitance were used to determine the thickness and dielectric constant of the bilayers. The thickness of the hydrocarbon region of the five bilayer systems ranged from 2.5 to 3.0 nm. Two of the bilayer systems (made from 1-chlorodecane and 1-bromodecane solvents) had a high dielectric constant (2.8 to 2.9) whereas the other bilayer systems had dielectric constants close to that of pure hydrocarbons (2.2). The charge-pulse technique was used to study the transport kinetics of three lipophilic ions and two ion carrier complexes in the bilayers. For the low dielectric constant bilayers, the transport of the lipophilic ions tetraphenylborate, tetraphenylarsonium and dipicrylamine was governed mainly by the thickness of the hydrocarbon region of the bilayer whereas the transport of the ion-carrier complexes proline valinomycin-K+ and valinomycin-Rb+ was nearly independent of thickness. This is consistent with previous studies on thicker monoolein bilayers. The transport of lipophilic anions across bilayers with a high dielectric constant was 20 to 50 times greater than expected on the basis of thickness alone. This agrees qualitatively with predictions based on Born charging energy calculations. High dielectric constant bilayers were three times more permeable to the proline valinomycin-K+ complex than were low dielectric constant bilayers but were just as permeable as low dielectric constant bilayers to the valinomycin-Rb+ complex.  相似文献   

13.
Summary A Ca-activated, K-selective channel from plasma membrane of rat skeletal muscle was studied in artificial lipid bilayers formed from either phosphatidylethanolamine (PE) or phosphatidylserine (PS). In PE, the single-channel conductance exhibited a complex dependence on symmetrical K+ concentration that could not be described by simple Michaelis-Menten saturation. At low K+ concentrations the channel conductance was higher in PS membranes, but approached the same conductance observed in PE above 0.4m KCl. At the same Ca2+ concentration and voltage, the probability of channel opening was significantly greater in PS than PE. The differences in the conduction and gating, observed in the two lipids, can be explained by the negative surface charge of PS compared to the neutral PE membrane. Model calculations of the expected concentrations of K+ and Ca2+ at various distances from a PS membrane surface, using Gouy-Chapman-Stern theory, suggest that the K+-conduction and Ca2+-activation sites sense a similar fraction of the surface potential, equivalent to the local electrostatic potential at a distance of 9 Å from the surface.  相似文献   

14.
Philip J. White 《Planta》1994,193(2):186-193
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A voltage-dependent cation-channel became incorporated into the bilayer with its cytoplasmic surface facing the trans compartment (which was grounded) and was characterized from single-channel recordings. The channel had a unitary conductance of 174 pS in symmetrical 100 mM KCl. The selectivity towards monovalent cations, determined from both conductance measurements in symmetrical 100 mM cation chloride and from permeability ratios in the presence of (cis: trans) 100 mM cation chloride: 100 mM KCl, was CsKRb>Na. The channel was also permeable to both Ba2+ and Ca2+. Although the unitary conductances in symmetrical 100 mM BaCl2 and CaCl2 were only 46 pS and 40 pS, respectively, the apparent permeabilities of the divalent cations relative to K+ were greater than expected (PKPBaPCa, 1.001.662.60). This anomaly might result from competition between divalent and monovalent cations for an intrapore binding site. The channel exhibited complex gating kinetics, which were modulated in response to changes in the zero-current (reversal) potential of the channel (Erev). In symmetrical 100 mM KCl the channel inactivated at positive voltages greater than 100 mV and the activated channel exhibited a high probability of being in an open-state (P0>0.90) at all voltages between ±100 mV. Channel P0 approximated unity at voltages in the range -60 to +20 mV. As more-negative voltages were applied, P0 decreased gradually. In contrast, as more positive voltages were applied, P0 decreased initially to a local minimum (approaching P0=0.90), then increased as the voltage was further increased before declining at extreme positive voltages. Under physiologically relevant ionic conditions, with 100 mM KCl plus contaminant Ca2+ on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side of the channel, Erev was 25.2 mV and the relative permeability PCa/PK was 7.45. Thus, the channel would be activated by plasma-membrane depolarization in vivo and facilitate Ca2+ influx and net K+ efflux. A role in intracellular signalling is proposed for this channel. It could open in response to stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and, thereby, initiating a cellular response. The outward K+ current would act to stabilize the trans-plasma membrane voltage, preventing excessive depolarization during Ca2+ influx.Abbreviations and Symbols EK Nernst (equilibrium) potential for potassium ions - Erev zero-current (reversal) potential of the channel - c apparent mean lifetime of the activated-channel closed-state - o apparent mean lifetime of the activated-channel open-state - PE dephosphatidylethanolamine - PO probability of finding the activated channel in an open-state This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge).  相似文献   

15.
Escherichia coli hemolysin forms cation selective, ion-permeable channels of large conductance in planar phospholipid bilayer membranes. The pore formation mechanism is voltage dependent resembling that of some colicins and of diphtheria toxin: pores open when negative voltages are applied and close with positive potentials. The pH dependence of this gating process suggests that it is mediated by a negative fixed charge present in the lumen of the pore. A simple physical model of how the channel opens and closes in response to the applied voltage is given.  相似文献   

16.
Fluorescent probes are used in membrane biophysics studies to provide information about physical properties such as lipid packing, polarity and lipid diffusion or to visualize membrane domains. However, our understanding of the effects the dyes themselves may induce on the membrane structure and properties are sparse. As mechanical properties like bending elasticity were already shown to be highly sensitive to the addition of “impurities” into the membranes, we have investigated the impact of six different commonly used fluorescent membrane probes (LAURDAN, TR-DPPE, Rh-DPPE, DiIC18, Bodipy-PC and NBD-PC) on the bending elasticity of dye containing POPC GUVs as compared to single component POPC GUVs. Small changes in the membrane bending elasticity compared to single POPC bilayers are observed when 2 mol% of Rh-DPPE, Bodipy-PC or NBD-PC are added in POPC membranes. These binary membranes are showing non reproducible mechanical properties attributed to a photo-induced peroxidation processes that may be controlled by a reduction of the fluorescent dye concentration. For TR-DPPE, a measurable decrease of the bending elasticity is detected with reproducible bending elasticity measurements. This is a direct indication that this dye, when exposed to illumination by a microscope lamp and contrary to Rh-DPPE, does not induce chemical degradation. At last, LAURDAN and DiIC18 probes mixed with POPC do not significantly affect the bending elasticity of pure POPC bilayers, even at 2 mol%, suggesting these latter probes do not induce major perturbations on the structure of POPC bilayers.  相似文献   

17.
We have investigated the basic properties of a predominantly anion-selective channel derived from highly purified human platelet surface membrane. Single channels have been reconstituted into planar phospholipid bilayers by fusion of membrane vesicles and recorded under voltage-clamp conditions. The channel is found to have the following properties: (i) Channel activity occurs in bursts of openings separated by long closed periods. (ii) The current-voltage relationship is nonlinear. Channel current is seen to rectify, with less current flowing at positive than at negative voltages. Rectification may be due to asymmetric block by HEPES/Tris buffers. In 450 mM KCl, 5 mM HEPES/Tris, pH 7.2, the single channel conductance at -40 mV is approximately 160 pS and at +40 mV is approximately 90 pS. (iii) The conductance-concentration relationship follows a simple saturation curve. Half maximal conductance is achieved at a concentration of approximately 1000 mM KCl, and the curve saturates at a conductance of approximately 500 pS. (iv) Reversal potentials interpreted in terms of the Goldman-Hodgkin-Katz equation indicate a Cl: K permeability ratio of 4:1. (v) The channel accepts all of the halides as well as a number of other anions. The following sequence of relative anion permeabilities (in the presence of K+) is obtained: F- less than acetate- less than gluconate- less than Cl- less than Br- less than I- less than NO3- less tha SCN-.(vi) Cations as large as TEA+ are permeant. (vii) Current through the channel is blocked in the presence of DIDS, SITS and ATP, but not by Zn2+.  相似文献   

18.
The consequences of the binding of annexin V on its lateral mobility and that of lipids were investigated by means of experimental and simulated FRAP experiments. Experiments were carried out on planar supported bilayers (PC/PS 9:1 mol/mol mixtures) in the presence of 1 mM CaCl2 in the subphase. The probes C12-NBD-PS and fluorescein-labeled annexin V were used and the data compared with that previously obtained for C12-NBD-PC [Saurel, O., Cézanne, L., Milon, A., Tocanne, J. F., & Demange, P. (1998) Biochemistry 37, 1403-1410]. At complete coverage of the lipid bilayer by the protein (Cannexin = 80 nM), the lateral mobility of C12-NBD-PC was reduced by 40% while C12-NBD-PS and bound annexin V molecules were nearly immobilized (D < 10(-)11 cm2/s). At moderate protein concentration (20 nM < Cannexin < 80 nM), best fitting of the lipid and protein probe recoveries was achieved with one single diffusion coefficient and a mobile fraction close to 100%, indicating homogeneous lipid and protein populations. In contrast, at low protein concentration (Cannexin < 20 nM), C12-NBD-PS showed a two-component diffusion. The slow PS population at Cannexin < 20 nM and the single PS population at Cannexin > 20 nM moved at the same rate that bound annexin V (mobile fraction close to 100%), indicating strong PS/protein interactions. With the aid of computer simulations of the lateral motion of PC molecules, based on the 2-D crystalline networks formed by annexin V in contact with the lipid bilayer, these FRAP results may be accounted for by considering a rather simple model of a proteolipidic complex consisting of an extended 2-D crystalline protein network facing the lipid bilayer and stabilized by strong interactions between annexin V and PS molecules. In this model, immobilization of annexin V and PS molecules originates from their mutual interactions. The slowing down of PC molecules is due to various obstacles to their lateral diffusion which can be described as: the four PS molecules bound to the protein, the tryptophan 187 which presumably interacts with the lipids at the level of their polar headgroups and probably the three other hydrophobic amino acid residues located on the AB calcium-binding loops of the protein.  相似文献   

19.
Summary The effects of scorpion and sea anemone polypeptide toxins on partially purified veratridine (VER)-activated Na channels from rat brain were studied at the single-channel level in planar lipid bilayers. The probability of the VER-activated channel being open (P o ) increased with depolarization;P o was 0.5 at –40 to –50 mV. Saxitoxin (STX) blocked VER-activated channels with an apparent dissociation constant of about 1nm at –45 mV. The apparent single-channel conductance was approximately 9 pS, similar to that seen in VER-activated Na channels from skeletal muscle transverse tubules. Addition of sea anemone or scorpion polypeptide toxins to VER-activated Na channels resulted in a 19% increase in apparent single-channel conductance and a hyperpolarizing shift in theP o vs. V m relation such that the channels were more likely to be open at potentials <40 mV. These effects of the polypeptide toxins on the single-channel properties of VER-activated Na channels may account for the previously described potentiation of VER action by polypeptide toxins.  相似文献   

20.
Lin MC  Kagan BL 《Peptides》2002,23(7):1215-1228
Abeta25-35, a fragment of the neurotoxic amyloid beta protein Abeta1-42 found in the brain of Alzheimer patients, possesses amyloidogenic, neurotoxins and channel forming abilities similar to that of Abeta1-42. We have previously reported that Abeta25-35 formed voltage-dependent, relatively nonselective, ion-permeable channels in planar lipid bilayers. Here, we show that Abeta25-35 formed channels in both solvent-containing and solvent-free bilayers. We also report that for Abeta25-35, channel forming activity was dependent on ionic strength, membrane lipid composition, and peptide concentration, but not on pH. Lower ionic strength and negatively charged lipids increased channel formation activity, while cholesterol decreased activity. The nonlinear function relating [Abeta25-35] and membrane activity suggests that aggregation of at least three monomers is required for channel formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号