首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arocas V  Turk B  Bock SC  Olson ST  Björk I 《Biochemistry》2000,39(29):8512-8518
The interaction of a well-defined pentasaccharide sequence of heparin with a specific binding site on antithrombin activates the inhibitor through a conformational change. This change increases the rate of antithrombin inhibition of factor Xa, whereas acceleration of thrombin inhibition requires binding of both inhibitor and proteinase to the same heparin chain. An extended heparin binding site of antithrombin outside the specific pentasaccharide site has been proposed to account for the higher affinity of the inhibitor for full-length heparin chains by interacting with saccharides adjacent to the pentasaccharide sequence. To resolve conflicting evidence regarding the roles of Lys136 and Lys139 in this extended site, we have mutated the two residues to Ala or Gln. Mutation of Lys136 decreased the antithrombin affinity for full-length heparin by at least 5-fold but minimally altered the affinity for the pentasaccharide. As a result, the full-length heparin and pentasaccharide affinities were comparable. The reduced affinity for full-length heparin was associated with the loss of one ionic interaction and was caused by both a lower overall association rate constant and a higher overall dissociation rate constant. In contrast, mutation of Lys139 affected neither full-length heparin nor pentasaccharide affinity. The rate constants for inhibition of thrombin and factor Xa by the complexes between antithrombin and full-length heparin or pentasaccharide were unaffected by both mutations, indicating that neither Lys136 nor Lys139 is involved in heparin activation of the inhibitor. Together, these results show that Lys136 forms part of the extended heparin binding site of antithrombin that participates in the binding of full-length heparin chains, whereas Lys139 is located outside this site.  相似文献   

2.
Antithrombin III Basel is a hereditary abnormal antithrombin with normal progressive inhibition activity (normal reactive site) and reduced heparin cofactor activity (impaired heparin binding site). Structures of antithrombin III Basel and normal antithrombin III isolated from the same patient were compared by peptide mapping using the dimethylaminoazobenzene isothiocyanate precolumn derivatization technique. Of the approximately 50 tryptic peptides of normal and abnormal antithrombin III, one peptide comprising residues 40-46 had a different retention time in reversed-phase high performance liquid chromatography. The amino acid sequence of the peptide from antithrombin III Basel had a single substitution of Pro (normal) by Leu (abnormal) at position 41. This substitution is close to an Arg (residue 47) and a Trp (residue 49) which have previously been shown to be critical for heparin binding by antithrombin III. Although additional amino acid substitutions in antithrombin III Basel cannot be ruled out, this Pro-Leu replacement could cause a conformational change by increasing both the helical structure and the hydrophobicity around residue 41. These data suggest that: (i) the heparin binding site of antithrombin III encompasses the region containing residues 41, 47, and 49; and (ii) the impaired heparin cofactor activity of antithrombin III Basel is likely due to a conformational change of the heparin binding site induced by the Pro-Leu substitution at position 41.  相似文献   

3.
Four monoclonal antibodies with distinct epitopes were prepared against antithrombin III. None of them is directed against the heparin-binding region nor the active site, yet two mAb namely A36 and B108, interfere with antithrombin III inhibition of thrombin. The epitope of monoclonal antibody A36 is located within amino acid residues 1-393, at a site different from the active site since it recognizes antithrombin III and antithrombin-III-thrombin complexes with the same affinity. A36 partially prevents the intrinsic antithrombin III activity and has no effect on the heparin-enhanced antithrombin III activity when added to the antithrombin-III--heparin complex. If A36 is first reacted with antithrombin III and then heparin is added to the reaction mixture, A36 fixes the conformation of antithrombin III so that heparin binds to antithrombin III, but is not able to induce the conformational change in the antithrombin III molecule required for the enhanced activity. The epitope for monoclonal antibody B108 is located within residues 282-393, close to the active site. It does not recognize antithrombin-III-thrombin complexes by solid-phase radioimmunoassay. Its binding to antithrombin III induces a conformational change that enhances antithrombin III activity in a manner that resembles the heparin effect, but its effect is additive to the heparin effect, since when it was added to a reaction mixture which contained a saturating amount of heparin, inhibition of thrombin was enhanced. The epitope for monoclonal antibody A5 is located within residues 1-393, and its recognition of antithrombin III or antithrombin-III-thrombin is strongly dependent on the integrity of the disulfide bonds. A5 has no effect on antithrombin III activities. The epitope for monoclonal antibody A10 is well defined within a narrow range of 55 amino acid residues, 339-393, on the antithrombin III molecule, close to the active site, yet it has no effect on antithrombin III inhibitory activity. These monoclonal antibodies may be developed for various diagnostic or clinical purposes and offer a powerful tool for studying the conformational changes and structure/activity relationships in the antithrombin III molecule.  相似文献   

4.
Antithrombin III exists in plasma as major and minor isoforms differing in affinity for heparin. The nature of the binding of each purified isoform to immobilized heparins was investigated. Unfractionated, mixed-affinity heparin bound each isoform with both high affinity and concentration-dependent low affinity. The isoforms were resolved when filtered through low-affinity heparin (heparin repeatedly passed over immobilized antithrombin III) columns. Following chemical modification of a specific tryptophan residue required for heparin binding, each isoform failed to bind to either low-affinity or mixed-affinity heparin-agarose, but elution of the modified higher-affinity isoform was retarded on both gels. Because the modified lower-affinity isoform eluted with the similarly sized bovine serum albumin in these experiments, the difference in isoform affinity for heparin appears to be the result of a unique, secondary heparin-binding site in the higher-affinity isoform that can bind a heparin site with low affinity for antithrombin III. This interpretation was supported by the chromatographic behavior of the isoforms on mixed-affinity agarose during reverse gradient elution. Two other populations of each of the tryptophan-modified isoforms were identified. Since these isoforms bound tightly to mixed-affinity heparin-agarose but eluted at lower salt concentrations than the corresponding unmodified isoforms, both isoforms may contain additional secondary sites that interact weakly with heparin. A general model of heparin-antithrombin III interaction is proposed in which a high-affinity heparin site initially interacts with a primary site on antithrombin III. The subsequent conformational change leads to a cooperative, entropy-driven association between secondary sites on the protein and low-affinity sites on heparin, stabilizing antithrombin III in its activated form.  相似文献   

5.
The binding of heparin causes a conformational change in antithrombin to give an increased heparin binding affinity and activate the inhibition of thrombin and factor Xa. The areas of antithrombin involved in binding heparin and stabilizing the interaction in the high-affinity form have been partially resolved through the study of both recombinant and natural variants. The role of a section of the N-terminal segment of antithrombin, residues 22-46 (segment 22-46), in heparin binding was investigated using rapid kinetic analysis of the protein cleaved at residues 29-30 by limited proteolysis with thermolysin. The cleaved antithrombin had 5.5-fold lowered affinity for heparin pentasaccharide and 1.8-fold for full-length, high-affinity heparin. It was shown that, although the initial binding of heparin is slightly enhanced by the cleavage, it dissociates much faster from the cleaved form, giving rise to the overall decrease in heparin affinity. This implies that the segment constituting residues 22-46 in the N terminus of antithrombin hinders access to the binding site for heparin, hence the increased initial binding for the cleaved form, whereas, when heparin is bound, segment 22-46 is involved in the stabilization of the binding interaction, as indicated by the increased dissociation constant. When the heparin pentasaccharide is bound to antithrombin prior to incubation with thermolysin, it protects the N-terminal cleavage site, implying that segment 22-46 moves to interact with heparin in the conformational change and thus stabilizes the complex.  相似文献   

6.
The maintenance of normal blood flow depends completely on the inhibition of thrombin by antithrombin, a member of the serpin family. Antithrombin circulates at a high concentration, but only becomes capable of efficient thrombin inhibition on interaction with heparin or related glycosaminoglycans. The anticoagulant properties of therapeutic heparin are mediated by its interaction with antithrombin, although the structural basis for this interaction is unclear. Here we present the crystal structure at a resolution of 2.5 A of the ternary complex between antithrombin, thrombin and a heparin mimetic (SR123781). The structure reveals a template mechanism with antithrombin and thrombin bound to the same heparin chain. A notably close contact interface, comprised of extensive active site and exosite interactions, explains, in molecular detail, the basis of the antithrombotic properties of therapeutic heparin.  相似文献   

7.
The effect of various well-characterized heparin preparations on the inactivation of human Factor XIa by human antithrombin III was studied. The heparin preparations used were unfractionated heparin and four heparin fractions obtained after anion-exchange chromatography. Inactivation of Factor XIa was monitored with S2366 as chromogenic substrate and followed pseudo-first-order reaction kinetics under all reaction conditions tested. Enhancement of the rate of inhibition of Factor XIa in the presence of unfractionated heparin correlated to the binding of antithrombin III to heparin. From the kinetic data a binding constant of 0.1 microM was inferred. The maximum rate enhancement, achieved at saturating heparin concentrations, was 30-fold. The rate enhancement achieved in the presence of each of the heparin fractions could also be correlated to the binding of antithrombin III to the heparin. The binding constant inferred from the kinetic data varied from 0.10 to 0.28 microM and the number of binding sites for antithrombin III varied from 0.06 to 0.74 site per heparin molecule. The maximum rate enhancements, achieved at saturating heparin concentrations, were strongly dependent on the type of heparin used and varied from 7-fold for fraction A to 41-fold for fraction D. Therefore, although the stimulation of Factor XIa inactivation by antithrombin III could be quantitatively correlated to the binding of antithrombin III to heparin, the heparin-catalysed inhibition of Factor XIa is dependent not only upon the degree of binding of antithrombin III to heparin but also upon the type of heparin to which antithrombin III is bound.  相似文献   

8.
Heparin cofactor II (Mr = 65,600) was purified 1800-fold from human plasma to further characterize the structural and functional properties of the protein as they compare to antithrombin III (Mr = 56,600). Heparin cofactor II and antithrombin III are functionally similar in that both proteins have been shown to inhibit thrombin at accelerated rates in the presence of heparin. There was little evidence for structural homology between heparin cofactor II and antithrombin III when high performance liquid chromatography-tryptic peptide maps and NH2-terminal sequences were compared. A partially degraded form of heparin cofactor II was also obtained in which a significant portion (Mr = 8,000) of the NH2 terminus was missing. The rates of thrombin inhibition (+/- heparin) by native and partially degraded-heparin cofactor II were not significantly different, suggesting that the NH2-terminal region of the protein is not essential either for heparin binding or for thrombin inhibition. A significant degree of similarity was found in the COOH-terminal regions of the proteins when the primary structures of the reactive site peptides, i.e. the peptides which are COOH-terminal to the reactive site peptide bonds cleaved by thrombin, were compared. Of the 36 residues identified, 19 residues in the reactive site peptide sequence of heparin cofactor II could be aligned with residues in the reactive site peptide from antithrombin III. While the similarities in primary structure suggest that heparin cofactor II may be an additional member of the superfamily of proteins consisting of antithrombin III, alpha 1-antitrypsin, alpha 1-antichymotrypsin and ovalbumin, the differences in structure could account for differences in protease specificity and reactivity toward thrombin. In particular, a disulfide bond which links the COOH-terminal (reactive site) region of antithrombin III to the remainder of the molecule and is important for the heparin-induced conformational change in the protein and high affinity binding of heparin does not appear to exist in heparin cofactor II. This observation provides an initial indication that while the reported kinetic mechanisms of action of heparin in accelerating the heparin cofactor II/thrombin and antithrombin III/thrombin reactions are similar, the mechanisms and effects of heparin binding to the two inhibitors may be different.  相似文献   

9.
Chemical modifications have demonstrated that the ultraviolet difference spectrum produced when heparin interacts with antithrombin III is due primarily to changes in the tryptophan environment. This is based on the observation that this spectrum could be abolished by treatment of antithrombin III with dimethyl (2-hydroxy-5-nitrobenzyl) sulfonium bromide but not with tetranitromethane. The tryptophan-modified antithrombin III is still capable of binding to thrombin even when it has lost 85% of heparin cofactor activity. A marked decrease in reactivity of tryptophan residues is observed when modification is carried out in the presence of heparin. Evidence is presented that tryptophan is in the heparin binding site.  相似文献   

10.
The catalysis by heparin of the reaction between thrombin and antithrombin   总被引:1,自引:0,他引:1  
Fluorescence polarization has been used to study the kinetics of the combination of thrombin with antithrombin and its catalysis by the polysaccharide heparin. The heparin-catalysed combination of thrombin and antithrombin is saturable with respect to both thrombin and antithrombin. The rate-determining step of the reaction is approximately 1.7 s-1. The kinetics observed can be explained by proposing that the catalyst of the reaction is not heparin alone but a complex of heparin and antithrombin (bound at the high-affinity site). The temperature dependence of the heparin-catalysed reaction is indistinguishable from that of the uncatalysed reaction. This coincidence is consistent with the rate-limiting step being the same in both cases.  相似文献   

11.
Small-angle X-ray scattering has been used to determine the size and shape of human antithrombin III and its complex with heparin. The scattering data obtained show that antithrombin III behaves like an ellipsoid with semi-axes of 1.9, 3.7, and 5.2 nm. The antithrombin III-heparin complex produces a scattering curve very similar to that of pure antithrombin III, indicating that there is no major change in size and shape upon binding of heparin. The nature of the heparin binding site is discussed.  相似文献   

12.
We investigated the kinetics of the inhibitory action of antithrombin III and antithrombin III plus heparin during the activation of factor X by factor IXa. Generation and inactivation curves were fitted to a three-parameter two-exponentional model to determine the pseudo first-order rate constants of inhibition of factor IXa and factor Xa by antithrombin III/heparin. In the absence of heparin, the second-order rate constant of inhibition of factor Xa generated by factor IXa was 2.5-fold lower than the rate constant of inhibition of exogenous factor Xa. It appeared that phospholipid-bound factor X protected factor Xa from inactivation by antithrombin III. It is, as yet, unclear whether an active site or a nonactive site interaction between factor Xa and factor X at the phospholipid surface is involved. The inactivation of factor IXa by antithrombin III was found to be very slow and was not affected by phospholipid, calcium, and/or factor X. With unfractionated heparin above 40 ng/ml and antithrombin III at 200 nM, the apparent second-order rate constant of inhibition of exogenous and generated factor Xa were the same. Thus, in this case phospholipid-bound factor X did not protect factor Xa from inhibition. In the presence of synthetic pentasaccharide heparin, however, phospholipid-bound factor X reduced the rate constant about 5-fold. Pentasaccharide had no effect on the factor IXa/antithrombin III reaction. Unfractionated heparin (1 micrograms/ml) stimulated the antithrombin III-dependent inhibition of factor IXa during factor X activation 400-fold. In the absence of reaction components this stimulated was 65-fold. We established that calcium stimulated the heparin-dependent inhibition of factor IXa.  相似文献   

13.
X J Sun  J Y Chang 《Biochemistry》1990,29(38):8957-8962
Arginyl residues of human antithrombin III have been implicated to involve in the heparin binding site [Jorgensen, A. M., Borders, C. L., & Fish, W. W. (1985) Biochem, J. 231, 59-63]. We have performed chemical modification of antithrombin with (p-hydroxyphenyl)glyoxal (HPG) in order to determine the locations of these arginine residues. Antithrombin was modified with 12 mM HPG in the absence and presence of heparin (2-fold by weight to antithrombin). In the absence of heparin, about 3-4 mol of arginines/mol of antithrombin were modified within 60 min, and the modification led to the loss of 95% of the inhibitor's heparin cofactor activity as well as heparin-induced fluorescence enhancement and 50% of its progressive inhibitory activity. In the presence of heparin, the extent of modification was diminished by 30% and modified antithrombin retained approximately 70% of its heparin cofactor activity. Peptide mapping and subsequent sequence analysis revealed that selective HPG modification occurred at Arg129 and Arg145 and that their modifications were protected upon binding of heparin to antithrombin. We conclude that Arg129 and Arg145 are situated within the heparin binding site of human antithrombin III.  相似文献   

14.
Alignment of the heparin-activated serpins indicates the presence of two binding sites for heparin: a small high-affinity site on the D-helix corresponding in size to the minimal pentasaccharide heparin, and a longer contiguous low-affinity site extending to the reactive center pole of the molecule. Studies of the complexing of antithrombin and its variants with heparin fractions and with reactive center loop peptides including intermolecular loop-sheet polymers all support a 3-fold mechanism for the heparin activation of antithrombin. Binding to the pentasaccharide site induces a conformational change as measured by circular dichroism. Accompanying this, the reactive center becomes more accessible to proteolytic cleavage and there is a 100-fold increase in the kass for factor Xa but only a 10-fold increase for thrombin, to 6.4 x 10(4) M-1 s-1. To obtain a 100-fold increase in the kass for thrombin requires in addition a 4:1 molar ratio of disaccharide to neutralize the charge on the extended low-affinity site. Full activation requires longer heparin chains in order to stabilize the ternary complex between antithrombin and thrombin. Thus, addition of low-affinity but high molecular weight heparin in conjunction with pentasaccharide gives an overall kass of 2.7 x 10(6) M-1 s-1, close to that of maximal heparin activation.  相似文献   

15.
The serpin, antithrombin, requires allosteric activation by a sequence-specific pentasaccharide unit of heparin or heparan sulfate glycosaminoglycans to function as an anticoagulant regulator of blood clotting proteases. Surprisingly, X-ray structures have shown that the pentasaccharide produces similar induced-fit changes in the heparin binding site of native and latent antithrombin despite large differences in the heparin affinity and global conformation of these two forms. Here we present kinetic evidence for similar induced-fit mechanisms of pentasaccharide binding to native and latent antithrombins and kinetic simulations which together support a three-step mechanism of allosteric activation of native antithrombin involving two successive conformational changes. Equilibrium binding studies of pentasaccharide interactions with native and latent antithrombins and the salt dependence of these interactions suggest that each conformational change is associated with distinct spectroscopic changes and is driven by a progressively better fit of the pentasaccharide in the binding site. The observation that variant antithrombins that cannot undergo the second conformational change bind the pentasaccharide like latent antithrombin and are partially activated suggests that both conformational changes contribute to allosteric activation, in agreement with a recently proposed model of allosteric activation.  相似文献   

16.
Active site blocked-thrombin, prepared by reacting thrombin with valyl-isoleucyl-prolyl-arginine chloromethyl ketone, inhibits the heparin enhanced-antithrombin III/thrombin reaction. Since active site blocked-thrombin does not interact with antithrombin III it was concluded that active site blocked-thrombin was competing for heparin in the reaction system. The heparin concentration dependence for maximum enhancement of the antithrombin III/thrombin reaction in the presence and absence of active site blocked-thrombin indicated that heparin was binding to thrombin to enhance the reaction rate. A dissociation constant value of 6.4×10?9M was estimated for the heparin·thrombin complex which is similar to the value of 5.8×10?9M previously reported (Griffith M.J. (1979)J. Biol. Chem. in press). Antithrombin III·thrombin complexes were also found to bind heparin with an affinity equivalent to thrombin. The results were interpreted to indicate that heparin binds to thrombin as the first step in the mechanism of action of heparin in enhancing the antithrombin III/thrombin reaction.  相似文献   

17.
Corrected fluorescence excitation and emission spectra of human antithrombin III have been determined. The fluorescence observed originates almost entirely from tryptophan residues. Reduction of the disulfide bonds followed by carboxymethylation did not change the fluorometric properties of the protein. The binding of heparin to antithrombin III caused a marked fluorescence enhancement by about 30% of the intrinsic protein emission intensity. Various samples of heparin yielded different binding curves. Heparin fractionated by gel filtration seemed to be bound to two sites on antithrombin III with association constants of 0.6-10(6)m-1 and 0.2-10(6)M-1 respectively. Heparin, prepared by affinity chromatography on matrix-bound antithrombin III appeared to be bound to only one site with an association constant of 2.3-10(6)M-1. Under similar conditions heparin caused no increase of the intrinsic protein emission intensity when added to reduced and carboxymethylated antithrombin III. The implications of these findings are discussed.  相似文献   

18.
Antithrombin, the principal physiological inhibitor of the blood coagulation proteinase thrombin, requires heparin as a cofactor. We report the crystal structure of the rate-determining encounter complex formed between antithrombin, anhydrothrombin and an optimal synthetic 16-mer oligosaccharide. The antithrombin reactive center loop projects from the serpin body and adopts a canonical conformation that makes extensive backbone and side chain contacts from P5 to P6' with thrombin's restrictive specificity pockets, including residues in the 60-loop. These contacts rationalize many earlier mutagenesis studies on thrombin specificity. The 16-mer oligosaccharide is just long enough to form the predicted bridge between the high-affinity pentasaccharide-binding site on antithrombin and the highly basic exosite 2 on thrombin, validating the design strategy for this synthetic heparin. The protein-protein and protein-oligosaccharide interactions together explain the basis for heparin activation of antithrombin as a thrombin inhibitor.  相似文献   

19.
A fragment of antithrombin that binds both heparin and thrombin.   总被引:1,自引:1,他引:0       下载免费PDF全文
In order to identify the regions of antithrombin that interact with heparin and thrombin, it was degraded with CNBr and the activities of the isolated products were investigated. These fragments did not exhibit direct thrombin-neutralizing activity; however, one unique fragment was found to bind to heparin-Sepharose and also to interfere with the inhibition of thrombin by intact antithrombin. This fragment was identified as the one consisting of three disulphide-linked polypeptide chains containing residues 1-17, 104-251 and 424-432. At a concentration of 46 nM, this product decreased the heparin-enhanced thrombin-inhibitory activity of antithrombin by half, and completely abolished this inhibition when above 300 nM. In the absence of heparin, the action of antithrombin was not completely nullified by the fragment, even when present at relatively high concentrations. At a given fragment concentration, the extent of inhibition was independent of antithrombin concentration over the range tested. It was found that the fragment decreased the second-order rate constant for the antithrombin-thrombin reaction. Reduction and alkylation of the fragment showed that the above properties reside primarily in the peptide with residues 104-251. It is concluded that this peptide possesses portions of the antithrombin molecule that bind to heparin as well as to a site on thrombin.  相似文献   

20.
The rate of the reaction between thrombin and antithrombin III is greatly increased in the presence of heparin. Several mechanisms for this effect are possible. To study the problems commercial heparin was fractionated into one fraction of high anticogulant activity and one of low anticoagulant activity by affinity chromatography on matrix-bound antithrombin III. The strength of the binding of the two heparin fractions to antithrombin III and thrombin, respectively, was determined by a crossed immunoelectrophoresis technique. As was to be expected, the high activity fraction was strongly bound to antithrombin III while the low activity fraction was weakly bound. In contrast, thrombin showed equal binding affinity for both heparin fractions. The ability of the two heparin fractions to catalyse the inhibition of thrombin by antithrombin III was determined and was found to be much greater for the high activity heparin fraction. A mechanism for the reaction between thrombin and antithrombin III in the presence of small amounts of heparin is suggested, whereby antithrombin III first binds heparin and this complex then inhibits thrombin by interaction with both the bound heparin and the antithrombin III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号