首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
花粉管导向是高等植物完成双受精过程的重要环节,是受多重信号调控的复杂过程.最近的研究揭示,配子体阶段花粉管导向的诱导信号分子是一类具多态性的富含半胱氨酸的防卫素类似蛋白,如来自玉米的ZmEA1和蓝猪耳草中的LUREs在吸引花粉管进入珠孔起重要作用.但是拟南芥及其它植物中此类信号未知.转录组学分析表明,一组DUF784基因可能在花粉管导向中起到重要作用.通过RNAi技术降低一组DUF784基因的表达,分析发现在RNAi转基因植株中,出现胚珠败育现象,花粉管导向出现异常,一部分花粉管不能进入珠孔.另外,用MYB98基因的启动子携带1个DUF基因的编码区,然后转化ccg突变体,发现ccg转基因株系中胚胎败育率下降,即DUF基因能部分互补ccg突变体的表型;从这两方面证实了DUF784基因在花粉管定向导入过程中的作用.  相似文献   

2.
Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.  相似文献   

3.
Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance.  相似文献   

4.
5.
6.
7.
Ling Y  Zhang C  Chen T  Hao H  Liu P  Bressan RA  Hasegawa PM  Jin JB  Lin J 《PloS one》2012,7(1):e29470
Female gametophyte is the multicellular haploid structure that can produce embryo and endosperm after fertilization, which has become an attractive model system for investigating molecular mechanisms in nuclei migration, cell specification, cell-to-cell communication and many other processes. Previous reports found that the small ubiquitin-like modifier (SUMO) E3 ligase, SIZ1, participated in many processes depending on particular target substrates and suppression of salicylic acid (SA) accumulation. Here, we report that SIZ1 mediates the reproductive process. SIZ1 showed enhanced expression in female organs, but was not detected in the anther or pollen. A defect in the siz1-2 maternal source resulted in reduced seed-set regardless of high SA concentration within the plant. Moreover, aniline blue staining and scanning electron microscopy revealed that funicular and micropylar pollen tube guidance was arrested in siz1-2 plants. Some of the embryo sacs of ovules in siz1-2 were also disrupted quickly after stage FG7. There was no significant affects of the siz1-2 mutation on expression of genes involved in female gametophyte development- or pollen tube guidance in ovaries. Together, our results suggest that SIZ1 sustains the stability and normal function of the mature female gametophyte which is necessary for pollen tube guidance.  相似文献   

8.
Light microscopic observations were made on 22 ovules from fertile plants and 108 ovules from sterile plants of the cv. KS synaptic mutant, a highly male-sterile, female-sterile line of soybean [Glycine max (L.) Merr.] (2n = 2x = 40). Ovules of fertile siblings contained normal embryo sacs and embryos. Ovules from sterile plants contained various irregularities. The most consistent abnormality was the failure of the embryo sac to attain normal size. Small megasporocytes of irregular shape were seen; only one megasporocyte of normal shape and size was noted. No linear tetrads were found. However, two ovules contained nonlinear triads. A range from zero to 28 cells and nuclei, of various sizes, were identifiable in small megagametophytes and embryo sacs. Degeneration of these nuclei and cells was noted as early as the four-nucleate gametophyte stage. Other ovules contained degenerated nucellar centers without embryo sacs. Two ovules appeared to be normal. Late postpollination stages were marked by shrunken nucellus and integuments. The presence of pollen tube traces, endosperm, and aborting embryos in ovules of hand-pollinated flowers from sterile plants suggested that no incompatibility was involved. Degeneration of the gametophyte and embryo sac contents at many developmental stages indicated a wide array of effects, possibly resulting from meiotic irregularities similar to those seen in microsporogenesis of this mutant.  相似文献   

9.
Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.  相似文献   

10.
Plants produce female gametes through mitotic division in the multicellular, meioticolly reduced (haploid) megagametophyte phase. In flowering plants, the megagametophyte is the embryo sac; female gametogenesis or megagametogenesis comprises the ontogeny of the embryo sac. As a step toward understanding the role of embryo sac-expressed genes in megagametogenesis, development of normal, haploid embryo sacs in maize was compared with development of embryo sacs deficient for various small, cytologically defined chromosomal regions. This analysis allowed us to screen 18% of the maize genome, including most of chromosome arms 1L and 3L, for phenotypes due specifically to deletion of essential, embryo sac-expressed genes. Confocal laser scanning microscopy of whole developing embryo sacs confirmed that normal megagameto-genesis in maize is of the highly stereotyped, bipolar Polygonum type common to most flowering plants examined to date. Deficiency embryo sac phenotypes were grouped into three classes, suggesting each deficient region contained one or more of at least three basic types of haploid-expressed gene functions. In the first group, three chromosome regions contained genes required for progression beyond early, free-nuclear stages of embryo sac development. Maintaining synchrony between events at the two poles of the embryo sac required genes located within two deficiencies. Finally, three chromosome regions harbored loci required for generation of normal cellular patterns typical of megagametogenesis. This analysis demonstrates that the embryo sac first requires postmeiotic gene expression at least as early as the first postmeiotic mitosis. Furthermore, our data show that a variety of distinct, genetically separable programs require embryo sac-expressed gene products during megagametogenesis, and suggest the nature of some of those developmental mechanisms. © 1995 Wiley-Liss, Inc.  相似文献   

11.
In contrast to most angiosperms, in which fertilization occurs 1 or 2 days after pollination, in some plant orders, including the Fagales, fertilization is delayed from 4 days to more than 1 year, raising questions regarding why fertilization is delayed and where and how pollen tubes remain in the pistil during the delay. To answer these questions, we investigated pollen-tube growth in pistils of Fagus japonica (Fagaceae), which are tricarpellate and have six ovules, using light, fluorescence, and scanning electron microscopy. The ovules were immature at the time of pollination and required 5 weeks to become fully developed. During this 5 weeks, pollen tubes grew from the stigma to the embryo sac in association with the development of ovules and intermittently in three steps with two growth-cessation sites, i.e., on the funicle and near the micropyle. The number of pollen tubes was gradually reduced from many to one at the two growth-cessation sites, and fertilization occurred in one ovule that apparently developed earlier than the others in the pistil. Thus, delayed fertilization plays an important role in gametophyte competition and selection leading to nonrandom fertilization. Intermittent pollen-tube growth is also likely widespread in angiosperms because it is known in other Fagales and an unrelated order Garryales.  相似文献   

12.
The present article gives a brief survey of results of studies in the area of plant embryology directly associated with the discovery made by S.G. Navashin in 1898 of double fertilization in vivo and in vitro. These studies utilized methods of electronic and fluorescence microscopy, cytophotometry, and cultures of isolated ovules, sperm, and the embryo sac central cell. Questions related to the origin of the female gametophyte of flowering plants, double fertilization, and the endosperm are considered. It is emphasized that progress in this field is associated chiefly with the study of molecular processes that regulate the development and functioning of the female gametophyte and the sporophyte on early stages of ontogenesis.  相似文献   

13.
A short review of the results of investigations in the field of plant embryology in vivo and in vitro which are directly connected with the discovery of double fertilization in flowering plants by S.G. Navashin is presented. These results have been obtained by using the methods of electron and fluorescence microscopy, cytophotometry, cultures of isolated ovules, sperms, eggs, and embryo sac central cells. The question on an origin of the female gametophyte of flowering plants, double fertilization, and endosperm are discussed. It is emphasized that the progress in this field is connected mostly with the study of molecular processes which control the development and functioning of a female gametophyte and sporophyte at the early stages of ontogenesis.  相似文献   

14.
利用人工授粉,采用压片法对大核龙眼‘九月乌’和焦核龙眼‘闽焦64-1’、‘闽焦64-2’、‘白核’等的自交与杂交后花粉管的生长特性进行研究,同时应用常规石蜡切片技术对大核与焦核龙眼的雌配子体以及合子胚早期发育进行观察。结果表明,龙眼胚珠在单核胚囊形成前就开始败育,且焦核品种(系)的败育率显著高于大核品种。不同亲本组合的授粉率存在差异,所有授粉组合在授粉36~48 h后均能观察到1个花粉管生长并进入胚囊受精。焦核品种(系)的胚胎在谢花后10 d开始败育,且败育率明显高于大核品种。受精是龙眼子房发育的首要条件,胚珠败育的雌蕊在谢花后10 d不膨大,不能发育形成焦核果实。谢花后10~30 d的早期胚胎败育是形成焦核龙眼的主要原因。焦核品种‘白核’胚乳具有成胚能力。约有24%的‘闽焦64-1’胚珠在胚胎发育过程中,其助细胞、合点端细胞及胚乳发生异常,这可能与早期胚胎败育有关。  相似文献   

15.
Ticodendron incognitum is the sole species of the Ticodendraceae, which was established as a new family in the Fagales less than 20 years ago. Considering the diverse modes of pollen tube growth observed in other Fagales, we investigated the growth of pollen tubes in the pistil of Ticodendron. At the time of pollination, T. incognitum had four immature ovules in a bilocular ovary, thus exhibiting delayed fertilization, as in other Fagales. During the period when fertilization was delayed, pollen tube growth in the pistil was intermittent, consisting of five steps associated with development of the ovules and embryo sacs. Four cessation sites occurred: in the style, in the tissue of the upper part of the ovary, inside and outside of the funicle and at the chalaza. A single pollen tube eventually reaches a mature embryo sac through the chalaza in one of the four ovules. While both delayed fertilization and intermittent pollen tube growth play a role in male and female gametophyte selection, as in other Fagales, the five‐step process of pollen tube growth through the chalaza (i.e. chalazogamy) is characteristic of lineages of the Casuarinaceae, Ticodendraceae and Betulaceae (the latter with the loss of one step). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 157 , 621–631.  相似文献   

16.
A homozygous self-compatible almond, originated from self-fertilization of a self-compatible genotype and producing a reasonable yield following open pollination, exhibited a very high fruit drop rate when self-pollinated. To investigate whether fruit dropping in this individual is related to an abnormal development of the embryo sac following self-fertilization, histological sections of ovaries from self and cross-pollinated flowers were observed by light microscopy. Additionally, the presence of pollen tubes in the ovary and fruit set were determined for both types of pollination. Despite pollen tubes reached the ovary after both pollinations, differences in embryo sac and endosperm development after fertilization were found. Thus, while for cross-fertilized ovules a pro-embryo and an endosperm with abundant nuclei were generally observed, most self-fertilized ovules remained in a previous developmental stage in which the embryo sac was not elongated and endosperm nuclei were absent. Although 30 days after pollination fruit set was similar for both pollination types, at 60 days it was significantly reduced for self-pollination. These results provide evidence that the high fruit drop in this genotype is the consequence of a disrupted development of the endosperm, what could be an expression of its high level of inbreeding.  相似文献   

17.
Arabidopsis has three cytokinin receptors genes: CRE1, AHK2 and AHK3. Availability of plants that are homozygous mutant for these three genes indicates that cytokinin receptors in the haploid cells are dispensable for the development of male and female gametophytes. The triple mutants form a few flowers but never set seed, indicating that reproductive growth is impaired. We investigated which reproductive processes are affected in the triple mutants. Anthers of mutant plants contained fewer pollen grains and did not dehisce. Pollen in the anthers completed the formation of the one vegetative nucleus and the two sperm nuclei, as seen in wild type. The majority of the ovules were abnormal: 78% lacked the embryo sac, 10% carried a female gametophyte that terminated its development before completing three rounds of nuclear division, and about 12% completed three rounds of nuclear division but the gametophytes were smaller than those of the wild type. Reciprocal crosses between the wild type and the triple mutants indicated that pollen from mutant plants did not germinate on wild-type stigmas, and wild-type pollen did not germinate on mutant stigmas. These results suggest that cytokinin receptors in the sporophyte are indispensable for anther dehiscence, pollen maturation, induction of pollen germination by the stigma and female gametophyte formation and maturation.Key words: cytokinin, cytokinin receptor, female gametophyte, male gametophyte, stigma  相似文献   

18.
宁夏枸杞胚珠孚尔根染色后经透明用激光扫描共聚焦显微镜直接观察各发育时期胚珠内部结构。结果显示,用孚尔根染色后,枸杞大孢子发生和雌配子体发育的各个阶段都可在激光共聚焦显微镜下清楚呈现。此种方法克服了胚囊因深埋在胚珠体细胞组织中而难以观察的问题。与经典的切片方法相比,该法可对胚珠整体进行观察,操作简单、可在较短时间内大规模地检测胚囊发育状况。  相似文献   

19.
Attraction and transport of male gametes for fertilization   总被引:9,自引:1,他引:8  
 Two capabilities are critical in attracting and transporting male gametes for fertilization: (1) the pollen tube must locate, enter and discharge its contents at the correct site within the female gametophyte, and (2) once inside the embryo sac, the non-motile male gametes must be transported to the egg and the central cells for double fertilization. This review summarizes current information about evidence for communication between embryo sac and pollen tube and the means by which the non-motile male gametes are transported from the aperture of the pollen tube to the site of gamete fusion. Received: 6 June 1996 / Revision accepted: 9 July 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号