首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial reduction of molecular oxygen produces reactive oxyradicals, including the superoxide anion radical (O - 2 ) and hydroxyl radical (·OH). The gas gland functions under hyperoxic and acidic conditions and therefore is likely to be subjected to enhanced oxidative stress. Aspects of pro- and antioxidant processes in gas gland were compared with other tissues likely to be subject to differing degrees of oxyradical production, viz. liver (site of chemically-mediated oxyradical production), gills and skeletal muscle. Antioxidant enzyme activities (superoxide dismutase, catalase, selenium-dependent and total glutathione peroxidase) per g wet weight were highest in liver and lowest in muscle. Catalase and glutathione peroxidase activies per g wet weight were higher in gills than in gas gland, whereas the reverse was seen for superoxide dismutase. Cytosolic superoxide dismutase activities per mg protein were two- and nine-fold higher in gas gland than in liver and gills. The pH characteristics of the antioxidant enzymes were generally similar in all the tissues. Glutathione, vitamin E and unsaturated (peroxidizable) lipid levels were generally highest in liver followed by gas gland. Lipid peroxidation (malonaldehyde equivalents) was evident in all tissues except gas gland. Hydrogen peroxide and O - 2 were involved in the NAD(P)H-dependent ferric/EDTA-mediated formation of ·OH (as measured by 2-keto-4-methiolbutyrate oxidation) by mitochondrial and postmitochondrial fractions of gas gland. Tissue maximal potentials for ·OH production paralled superoxide dismutase but not catalase or glutathione peroxidase activities. Overall, the results confirm the presence of effective antioxidant defences in gas gland and support previous workers' contentions of a central role for superoxide dismutase in this process.Abbreviations EDTA di-sodium ethylenediaminetetra-acetic acid - G-6-P glucose-6-phosphate - GPX total glutathione peroxidase - GSH reduced glutathione - GSSG oxidised glutathione - GST glutathion-S-transferase - HPLC high performance liquid chromatography - KMBA 2-keto-4-methiolbutyric acid - MOPS 3-[N-morpholino] propane-sulphonic acid - PMS postmitochondrial supernatant - Se-GPX selenium-dependent glutathion peroxidase - SOD superoxide dismutase - TCA trichloroacetic acid  相似文献   

2.
The selenium-dependent glutathione peroxidase activities of three mammalian cell lines, HT29, P31, and N-18, cultured in medium with low serum content, increased about 2-, 5-, and 40-fold, respectively, after supplementation with 100 nM selenite. Catalase, CuZn superoxide dismutase, and Mn superoxide dismutase activities were not generally influenced by selenite supplementation, and there was only a minor nonselenium-dependent glutathione peroxidase activity in the investigated cell lines. Gamma-irradiated control and selenite-supplemented cells showed no changes in the surviving fractions, as estimated by clonogenic survival or [3H]-thymidine uptake, nor were there any significant differences between the two groups in the induction of DNA strand breaks after gamma irradiation under repairing (37 degrees C) or nonrepairing (0 degrees C) conditions. The results suggest that selenium-dependent glutathione peroxidase does not contribute significantly to the radiation resistance of cultured mammalian cells.  相似文献   

3.
Oxidative stress induces apoptosis in cardiac cells, and antioxidants attenuate the injury. MicroRNAs (miRNAs) are also involved in cell death; therefore, this study aimed to investigate the role of miRNAs in the effect of selenium on oxidative stress‐induced apoptosis. The effects of sodium selenite were analyzed via cell viability, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration. Flow cytometry was used to evaluate cell apoptosis. Fura‐2AM was used to calculate intracellular Ca2+ concentration. Sodium selenite could ameliorate hydrogen peroxide (H2O2)‐induced cell apoptosis and improve expression levels of glutathione peroxidase and thioredoxin reductase. Pretreatment with sodium selenite improved SOD activity and reduced MDA concentration. Treatments with H2O2 or sodium selenite decreased miR‐328 levels. MiR‐328 overexpression enhanced cell apoptosis, reduced ATP2A2 levels, and increased intracellular Ca2+ concentration, while inhibition produced opposite effects. MiR‐328 might be involved in the effect of sodium selenite on H2O2‐induced cell death in H9c2 cells.  相似文献   

4.
Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70–100 g Chlorella dry mass l−1) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.  相似文献   

5.
Metals are known to influence the oxidative status of marine organisms, and antioxidant enzymes have been often proposed as biomarkers of effect. The clam Ruditapes decussatus is a well-known metal bioindicator. In this species cadmium (Cd) induces metallothionein (MT) synthesis only after 7 days of exposure. Before MT synthesis is induced, the other mechanisms capable of handling the excess of Cd are unknown. In order to identify some of these mechanisms, variations in antioxidant systems (superoxide dismutase, catalase, selenium-dependent glutathione peroxidase and non-selenium-dependent glutathione peroxidase), malondialdehyde (MDA) and MT were studied in the gills of R. decussatus exposed to different Cd concentrations (4, 40 and 100 gl-1) for 28 days. These parameters, together with total proteins and Cd concentrations, were measured in the gills of the clams over different periods of exposure. Results indicate that Cd accumulation increased linearly in the gills of R. decussatus with the increase in Cd concentration. This increase induces an imbalance in the oxygen metabolism during the first days of Cd exposure. An increase in cytosolic superoxide dismutase (SOD) activity and a decrease in mitochondrial SOD activity was observed at the same time as or after a decrease in cytosolic and mitochondrial catalase activity and of selenium-dependent and non-selenium-dependent glutathione peroxidase activity. After 14 days of exposure, Cd no longer affect these enzymes but there was elevation of other cellular activities, such as MDA and MT production. MT bound excess Cd present in the cell. These variations in these parameters suggest their potential use as biomarkers of effects such as oxidative stress resulting from Cd contamination in molluscs.  相似文献   

6.
The effects of inorganic selenium (Se) compounds (sodium selenite and selenate) on the activities of glutathione-related enzymes (glutathione peroxidase, glutathione-S-transferase [GST] and glutathione reductase [GR]) in pig blood platelets were investigated in vitro. GST activity in blood platelets treated with 10−4 M of selenite was reduced to 50%, whereas no decrease GST activity was observed after the treatment of platelets with the same dose of selenate. In platelets incubated with physiological doses (10−7, and 10−6 M) of Se compounds, the activity of glutathione peroxidase (GSH-Px) was enhanced (about 20%). GR activity after the exposure of platelets to tested Se compounds was unaffected.  相似文献   

7.
Intraperitoneal injection of rats with diethyldithiocarbamate (1.2 g/kg body wt) led to maximum diminution of superoxide dismutase activity at 1 hr by 86 and 84% in liver and red blood cell respectively with a gradual return to the normal level at 48 hr after administration of injection. Significant inhibition of selenium-dependent glutathione peroxidase was also observed, which returned to normal at 48 hr after administration of injection. However, maximum decline in its activity was at 12 hr by 52 and 73% in liver and red blood cells respectively. No significant difference in tissue level of selenium-independent glutathione peroxidase was observed during time course study after diethyldithiocarbamate administration. It is possible that inhibition of superoxide dismutase by diethyldithiocarbamate leads to accumulation of superoxide anion which in turn inactivates selenium-dependent glutathione peroxidase by its reaction with selenium at the active site of the enzyme.  相似文献   

8.
The mechanisms involved in the anti-carcinogenic activity of selenium remained to be elucidated. In the present study, we examined sodium selenite induced apoptosis and oxidative stress in human acute promyelocytic leukemia cell lines (NB4). Cell growth and viability were assessed by trypan blue exclusion and cell counting; apoptosis by DNA electrophoresis and analysis of intracellular DNA contents; reactive oxygen species and reduced glutathione in the cell were measured by lucigenin dependent chemoluminescent (CL) test and spectrophotometer; mitochondrial transmembrane potential was measured by flow cytometry. Sodium selenite could inhibit the growth and induce apoptosis of NB4 cells. Sodium selenite could increase the production of reactive oxygen species (ROS) in NB4 cells and decrease the level of intracellular reduced glutathione, but caused no change in the activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx). Sodium selenite enhanced the collapse of mitochondrial transmembrane potential (MTP), in parallel with the production of ROS. Finally antioxidant N-acetylcysteine (NAC) could inhibit the ROS production, MTP collapse and apoptosis in NB4 cells. Our results suggested that sodium selenite could induce apoptosis of NB4 cells through mitochondrial change mediated by production of reactive oxygen species within the cells.  相似文献   

9.
Here we present studies on the antioxidant status of a semi-natural grassland community, permanently growing in mini-FACE rings under elevated concentrations of atmospheric CO2 (560 μmol mol−1). In general, in leaves of Dactylis glomerata L. and Trifolium repens L., no differences between ambient and elevated CO2 were detected as concerns protein content, activity of oxidant-scavenging enzymes (catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase), and lipid peroxidation. The activity of antioxidant-regenerating enzymes (monodehydroascorbate reductase, dehydroascorbate reductase and glutathione disulfide reductase) and the content of antioxidants (ascorbic acid, dehydroascorbic acid, reduced glutathione and glutathione disulfide) showed remarkable variability between leaves from plants grown in ambient and CO2-enriched mini-FACE rings. Thus, in general it can be concluded that the effects of elevated CO2 at environmentally relevant concentrations on the leaf antioxidant status of a grassland community are extremely variable, species-specific and rather limited.  相似文献   

10.
The present study was aimed at determining the oxidative damage caused by sodium arsenite in 3T3 fibroblast cells and the possible protective role of curcumin (Cur) against sodium arsenite toxicity. Embryonic fibroblast cells were exposed to sodium arsenite (0.01, 0.1, 1, and 10 μM) in the presence and absence of Cur (2.5 μM) for 24 hours. Cell viability, cytotoxicity, lipid peroxidation, hydroxyl radical, hydrogen peroxide, antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and glutathione‐S‐transferase) and expression levels of antioxidant genes (superoxide dismutase, catalase, and glutathione peroxidase) were measured in embryonic fibroblast cells. Results demonstrated that sodium arsenite directly affects antioxidant enzymes and genes in 3T3 embryonic fibroblast cells and induces oxidative damage by increasing the amount of hydrogen peroxide, hydroxyl radical, and lipid peroxidation in the cell. Furthermore, the study indicated that Cur might be a potential ameliorative antioxidant to protect the fibroblast cell toxicity induced by sodium arsenite.  相似文献   

11.
Summary The antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase were measured in the rete mirabile and gas gland epithelium area of the swim bladder of the toadfish Opsanus tau. When the concentration of enzyme in the swim bladder was compared with the concentration in other organs (kidney, heart, gills) of the same fish, the swim bladder was found to have the highest concentration of superoxide dismutase but relatively low levels of glutathione peroxidase and catalase.Cytochemical assay for the peroxidatic activity of catalase confirmed that virtually no catalase is present in epithelial cells of the gas gland. A similar assay for peroxidase revealed a cyanide-sensitive peroxidase in the multilamellar bodies of these cells. Most of the catalase and peroxidase in the rete mirabile appears to be confined to the granules of neutrophils and the cytoplasm of erythrocytes. Enzyme activity in the neutrophils is not inhibited by 10-1 M KCN. Cyanide does appear to inhibit the peroxidase activity in erythrocytes but has little effect on catalase in these cells.Supported by grant No. HL23338 from the National Institutes of Health  相似文献   

12.
Three groups of New Zealand women were given daily in a double blind randomised study, 200 micrograms Se as sodium selenite, 170 mg alpha-tocopherol or a placebo for 4 wk. Activities of glutathione-S-transferase, superoxide dismutase and catalase were assayed in erythrocytes, plasma and platelets and in liver and muscle biopsy tissues. No changes in activities of any of these tissue enzymes were observed in any of the three groups. There were also no changes in non-selenium dependent glutathione peroxidase activities in liver or plasma. The lack of changes in any of these enzymes following selenium supplementation suggests that adaptive changes to the low selenium status of these subjects had not occurred through these lipid peroxidation defense mechanisms.  相似文献   

13.
Culture of the green alga Chlamydomonas reinhardtii in the medium containing sodium selenite caused the activity of ascorbate peroxidase to disappear and the appearance of glutathione peroxidase. The induced maximum activity of glutathione peroxidase reached 350 micromole (milligram chlorophyll hour)−1 under assay conditions used. The enzymic properties of the selenite-induced glutathione peroxidase closely resembled those of animal glutathione peroxidase that contains selenium.  相似文献   

14.
The activation of lipid peroxidation in ophthalmoherpes may be determined by the reduction in glutathione peroxidase and superoxide dismutase activity. The activity was less depressed in the contralateral eye. Administration of sodium selenite stimulated glutathione peroxidase activity and normalized superoxide dismutase activity.  相似文献   

15.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

16.
Lemna minor L. treated with 20, 50, or 100 μM CuSO4 accumulated Cu and reactive oxygen species (hydrogen peroxide and superoxide radical) in frond and root cells. The time-course analysis of lipid peroxidation showed high increment in malondialdehyde production only after 12 and 48 h of Cu treatment. Guaiacol peroxidase and superoxide dismutase activities decreased after 48 h while glutathione reductase activity enhanced 48 h after Cu-treatment. Ascorbate and glutathione contents increased with the increasing Cu stress.  相似文献   

17.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

18.
The present study was undertaken on male rats to elucidate the selenosis induced by sodium selenite and the role played by betaine in alleviating selenium toxicity. Rats were treated with sodium selenite (6 mg/kg body weight/day) with or without betaine (240 mg/kg body weight/day). Selenotoxicosis was evident from the elevated plasma levels of total bilirubin, transaminases, and alkaline phosphatase activities. Moreover, the total protein levels decreased, and this decrease associated with a decreased albumin level, whereas the globulin level increased in selenium-intoxicated rats. The development of selenosis corresponded well with the induction of oxidative stress evident from decrease of total thiol level and glutathione content. Furthermore, activities of glutathione reductase, glucose-6-phosphate dehydrogenase, catalase, and paraoxonase-1 were decreased in selenium-treated rats. In contrast, superoxide dismutase and glutathione peroxidase activities were increased by excess selenium administration compared with control animals. As well, malondialdehyde and protein carbonyl were elevated in rats treated with selenium. Supplementation of betaine simultaneously with selenium caused less marked alteration in the investigated parameters. Betaine attenuated the selenotoxicosis by restoring thiol levels that preserve enzymatic antioxidants activity and attenuate the oxidation of lipids and proteins.  相似文献   

19.
Hu  Qiuhui  Pan  Genxing  Zhu  Jianchun 《Plant and Soil》2002,238(1):91-95
The present study examined the effect of fertilization with sodium selenite on the selenium content of tea and the nutritional function of Se-enriched tea. Selenium content of tea leaves was increased up to 0.36 g g–1 by the application of sodium selenite to soil at 0.5 and 1.0 kg Se ha–1. Application by a Se-enriched organic manure at a rate of 0.5 kg Se ha–1 provided a higher biological availability of selenium for plant uptake compared with a similar amount of sodium selenite. Foliar spray of sodium selenite at 50–100 g Se ha–1 increased the selenium content to 0.32–1.45 g g–1 in tea leaves sampled at the 8–26 days after spraying. Selenium content in the blood and liver, glutathione peroxidase activity in blood of rats were significantly enhanced by feeding of an extracted solution of Se-enriched tea leaves and sodium selenite. Glutathione peroxidase activity in liver of rats fed with Se-enriched tea was higher than that fed with sodium selenite, indicating that the selenium in Se-enriched tea leaves is a more effective Se source than sodium selenite. Increasing the Se level in food products through the application of a selenium fertilizer is a safe, effective and feasible means of increasing the selenium intake of human and animals in low selenium areas of China.  相似文献   

20.
The age dynamics of selenium-dependent enzymes glutathione peroxidase and thyroxine-5'-deiodinases type I and II (D1 and D2 respectively) in bone marrow erythroblasts of new-born, 1-, 3-, 5- and 10-day old piglets as well as influences of hormones (thyroxine, cortisol) selenium and iron on enzyme activities were investigated. The enzyme activities in the pig erythroid cells were established to increase after birth. D1 activity increased in erythroblasts of 3-day old piglets, while augmentation of D2 activity was significant in the cells of 10-day old animals. Glutathione peroxidase and thyroxine-5'deiodinase activities in pig erythroblasts decreased under the influence of thyroxine and hydrocortisone in vivo, and increased after injections of sodium selenite. For comparison, activities of 5'-deiodinases in the cells of some other tissues were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号