首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Early Cretaceous Fort Terrett Formation of Mason County, central Texas, is a succession of subtidal to peritidal mud-dominated facies with minor intervals of bioclastic packstone–grainstone, rudist floatstone, and interbedded chert nodules. The strata conformably overlie the Hensel Formation, which was deposited unconformably on Precambrian basement. The Hensel Formation also contains a significant percentage of dolomite, precipitated within a fine-grained clayey matrix. The Hensel and Fort Terrett Formations were deposited during a transgressive episode, which provided the conditions for the extensive shallow-water Comanche carbonate platform. Siliciclastic and carbonate sediments were deposited along the coastal margin in subtidal, intertidal to supratidal areas. Previous dolomitization models have suggested that high permeability layers are required for dolomitizing brines to flow through a carbonate succession. Although, interparticle porosity in muddy tidal-flat successions can be significant, it has a limited flow capacity. However, interconnected fenestral porosity can allow sufficient fluid flow to move dolomitizing fluids more efficiently through the succession. Thus, it is hypothesized that interconnected fenestral porosity could have had a significant impact on permeability within this muddy succession and provided the pathways and conduits for Mg-rich brines. Four types of dolomite are recognized in the Fort Terrett succession. Three of these dolomite types formed largely by replacement and they occur throughout the succession. Features such as crystal size, crystal face geometry and zonation reflect the progressive development and recrystallization of the dolomite types. Only type 4 dolomite formed as a cement in void spaces during a late diagenetic stage. The direction of the dolomitizing fluid movement is difficult to determine, but it was likely downward in this case, controlled by a density-head driving-mechanism generated by dense hypersaline fluids from an evaporating lagoon.  相似文献   

2.
Summary Rust infected wheat plants were incubated with different 14C-labelled amino acids. Uredospores that were formed during the incubation contained 14C-activity. By analysis of these spores it was investigated whether the parasitic mycelium of Puccinia graminis takes amino acids from the host. It could be demonstrated that the applicated amino acids were taken up directly from the wheat leaf. The carbon sceletons of applicated lysine and arginine showed only little randomization of 14C-activity. Glutamic acid, alanine and glycine isolated from uredospore protein showed a very strong alteration of the original label. The pools of free amino acids in the host and the parasite are in isotope equilibrium. This demonstrates, that synthesis of amino acids in the mycelium is quantitatively not important. By following the kinetics of incorporation of an amino acid it could be demonstrated that the amino acids enter the parasite as free amino acids and not in the form of proteins.  相似文献   

3.
Well preserved microfossils were here described from the middle of Hebiancun Formation, Hutuo Group, northern China, estimated to be 2,000 2,400 Ma years old based on the K-Ar and U-Pb isotopic. They were coccoids (Globophycuswenshanensis Xu sp. nov.) and filamentous (Siphonophycus cf. kestron and Siphonophycus sp.) and occur in petrographic thin sections. The coccoids were preserved by permineralization in the chert part of the conical stromatolites (Zhongtiaoshanella) and the filamentous in black chert. The paleoenviromental modal for the setting of the Hebiancun Formation was able to be reconstructed according to the microfossit assemblage and different lithology observed. The formation was divided in ascending orders as follows: The breccia; the thick sandy dolomite; the black chert in which the filamentous microfossils in subparalled colonies were preserved; and the dolomite with conical stromatolites in which the coccoidal microfossils with hyaline and unlamelleted sheath was observed. As mentioned above, it was conjectured that the descent and uplift of the geosynclinal area led to transgression and regression during the Hebiancun time. Compared with the all microfloras in the world known uptodate the characteristics of the microfossils from Hebiancun Formation was similar to that from Transvaal Supergroup, South Africa. Both of them show of the big sizeof the algal bodies inspite of different types. The algae Seemed to have a big cell period during their systematization.  相似文献   

4.
Abstract— Tetrodotoxin, Ca2+-deprivation and high-Mg2+ were used in an effort to identify the portion of the evoked release of endogenous amino acids, labelled via metabolism of [14C]-glucose, and several exogenous labelled amino acids, that came from nerve terminals when slices of guinea pig cerebral cortex were superfused with glucose-free solutions and stimulated electrically. With some exceptions, spontaneous release of labelled amino acids was decreased by 2 μm -tetrodotoxin but increased in Ca2+-free medium and in solutions containing an extra 24 mm -MgCl2. Tetrodotoxin suppressed 85–90% of the stimulated release of almost all labelled amino acids, but had a smaller effect on the release of endogenous 14C-labelled threonine-serine-glutamine (unseparated). In Ca2+-free solution, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 80–90%, but that of endogenous 14C-labelled threonine-serine-glutamine was unaffected as was most of the release of the other labelled amino acids. In medium containing an extra 24mM-MgCl2, the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA was suppressed by 75-85%, that of exogenous labelled aspartate and GABA by 50–65%, but the release of the other labelled amino acids was unaffected. The control stimulated releases of endogenous 14C-labelled glutamate, aspartate and GABA were much larger than those of other labelled amino acids but were reduced by tetrodotoxin, Ca2+-deprivation and high-Mg2+ to a level similar to that of the control stimulated releases of the other labelled amino acids. These results suggest that almost all of the stimulated release of endogenous 14C-labelled glutamate, aspartate and GABA came from nerve terminals while those of the other labelled amino acids came from other tissue elements. In addition, they are in accord with a transmitter role for glutamate, aspartate and GABA in cerebral cortex.  相似文献   

5.
The effects of organic nitrogen on the metabolism of Clostridium acetobutylicum were investigated in batch fermentations. For this study, amino acids were added to a chemically defined medium in groups from the same biosynthetic pathways. In all cases the addition of amino acids shifted the solvent ratio to higher butanol production at the expense of that of acetone (except for the glutamic acid group) and ethanol (except for histidine). Highest biomass production was obtained from media containing aromatic amino acids and histidine (4.57 g · l−1 and 5.4 g · l−1, respectively). However, the solvent production (ca. 20 g · l−1) and the solvent yield (ca. 33%) in both cases, were similar to those obtained from the synthetic medium. Lower values were obtained from fermentations carried out with other families of amino acids. The strongest inhibition of cell growth (1.13 g · l−1) which related to the lowest solvent production (3.15 g · l−1) was observed on a medium complemented with amino acids of the pyruvic acid group. During the second phase of fermentation, amino acids-complemented media caused a less efficient remetabolization of acetic and butyric acids. Highest production of acids was obtained with the aspartic acid group (7.4 g · l−1). These observations suggest that amino acids can be used as a competitive nitrogen source and also modify the level of enzyme activities involved in acid and solvent production.  相似文献   

6.
Freshwater pulmonate snails (Biomphalaria glabrata), pre-treated under bacteriostatic conditions, were incubated in 10 ml of standard medium containing various U-14C-labelled amino acids at concentrations of 10 μM. Measurements of mass-specific accumulation rates (MSARs) based on HPLC and the accumulation of U-14C-labelled amino acids into snail tissues have shown unequivocally for the first time that freshwater snails achieved a net accumulation of all the amino acids tested, including aminoisobutyrate (AIB), aspartate, alanine and a mixture of 13 amino acids. There were no significant differences between the MSAR values determined by HPLC from those based on the use of radiolabelled amino acids, whereas MSAR values for control snails were negligible and significantly less. Incubation of snails in media containing radiolabelled aspartate and a mixture of amino acids showed that the accumulated amino acids were readily distributed through the snail’s tissues and then metabolized. The ecological and biochemical questions arising from the fact that freshwater snails are capable of net accumulation of exogenous amino acids at naturally occurring concentrations and subsequent metabolic conversion, contrary to widely held views, are addressed.  相似文献   

7.
Protein, nucleic acids, and nucleotide syntheses were studied in pea aphids, Acyrthosiphon pisum (Harris), by feeding them labeled 14C-amino acids and [5-3H]-orotic acid in sucrose. It was demonstrated that in the absence of dietary essential amino acids, aphids were capable of synthesizing nucleic acids, nucleotides, and proteins when provided with a single dietary amino acid in sucrose. It is suggested that other required amino acids were possibly supplied by the symbionts present in the pea aphid and/or were obtained from the amino acid pool in the hemolymph or glucose, one of the end products of sucrose digestion. Of the various amino acids tested, synthesis of measurable amounts of protein or other compounds occurred when alanine, aspartic acid, glutamic acid, glycine, proline, or serine were provided, but no synthesis occurred with cysteine.  相似文献   

8.
Silica biomorphs are inorganic self-organized precipitates resulting from a crystal aggregation process controlled by a metal silicate membrane. They display morphological and symmetric properties of living organisms and form under physico-chemical conditions similar to some geochemical conditions suggested for the chemical precipitation of Precambrian chert precursors. In consequence, these inorganic precipitates are proposed as an alternative interpretation to be considered when trying to decipher the biogenicity of putative Precambrian microbiotas.  相似文献   

9.
Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation and glycogen synthesis in mouse primary hepatocytes as well as in human hepatocarcinoma HepG2 cells. STAT3 knockdown protected insulin sensitivity from inhibition by amino acids. Amino acids stimulated the phosphorylation of STAT3 at Ser727, but not Tyr705. Replacement of the endogenous STAT3 with wild-type, but not S727A, recombinant STAT3 restored the ability of amino acids to inhibit insulin signaling, suggesting that Ser727 phosphorylation was critical for STAT3-mediated amino acid effect. Furthermore, overexpression of STAT3-S727D was sufficient to inhibit insulin signaling in the absence of excess amino acids. Our results also indicated that mammalian target of rapamycin was likely responsible for the phosphorylation of STAT3 at Ser727 in response to excess amino acids. Finally, we found that STAT3 activity and the expression of its target gene socs3, known to be involved in insulin resistance, were both stimulated by excess amino acids and inhibited by rapamycin. In conclusion, our study reveals STAT3 as a novel mediator of nutrient signals and identifies a Ser727 phosphorylation-dependent and Tyr705 phosphorylation-independent STAT3 activation mechanism in the modulation of insulin signaling.  相似文献   

10.
Mice were anaesthetized with nembutal and the effects of intraventricularly injected excitant amino acids on [U-14C]acetate metabolism were investigated. The natural excitant amino acids, l -glutamate and l -aspartate, reduced the incorporation of 14C from [U-14C]acetate into glutamine, GAB A and possibly alanine. The synthetic excitant amino acid, N-methyl-d -aspartate caused a reduction in the incorporation of 14C from intraventricularly injected [U-14C]acetate into all of the brain amino acids labelled by [U-14C]acetate within 5 min. It is suggested that these effects may be due to changes in pool sizes of tricarboxylic cycle intermediates, to inhibition of acetyl-CoA formation, or both. Differences in the metabolic effects of the synthetic and natural excitants are interpreted in terms of the uptake of the natural amino acids into glutamine-forming pool(s) of glutamate metabolism.  相似文献   

11.
Over 10 g of individual 2H, 15N-labeled amino acids was resolved and recovered on a laboratory-scale ion-exchange system from a crude bacterial protein hydrolyzate derived from 20 g of lyophilized cells. The 17 amino acids (cystine was not isolated) were recovered containing less than 1.0% of other contaminating amino acids except for proline (4.0%). The aromatic and basic amino acids were isolated on a dual-column carrier displacement system (390-ml resin bed volume) while most of the neutral and acidic amino acids were separated on a pyrazolium chloride elution system (560-ml resin bed volume). The two remaining overlapping pairs were resolved on small carrier displacement columns. In addition, the overlapping fractions from adjacent peaks of the pyrazolium chloride elution system represent only 3.5% (0.37 g) of the total sample.  相似文献   

12.
P. J. McAuley 《Planta》1987,171(4):532-538
Chlorella algae symbiotic in the digestive cells of Hydra viridissima Pallas (green hydra) were found to contain less amino-N and smaller pools of free amino acids than their cultured counterparts, indicating that growth in symbiosis was nitrogen-limiting. This difference was reflected in uptake of amino acids and subsequent incorporation into protein; symbiotic algae incorporated a greater proportion of sequestered radioactivity, supplied as 14C-labelled alanine, glycine or arginine, than algae from nitrogen-sufficient culture, presumably because smaller internal pools diluted sequestered amino acids to a lesser extent. Further experiments with symbiotic algae showed that metabolism of the neutral amino acid alanine differed from that of the basic amino acid arginine. Alanine but not arginine continued to be incorporated into protein after uptake ceased, and while internal pools of alanine were exchangeable with alanine in the medium, those of arginine were not exchangeable with external arginine. Thin-layer chromatography of ethanol-soluble extracts of algae incubated with [14C]alanine or [14C]arginine showed that both were precursors of other amino acids. The significance of nitrogen-limiting growth of symbiotic algae is discussed in terms of host-cell regulation of algal cell growth and division.  相似文献   

13.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   

14.
Hiatt AJ  Lowe RH 《Plant physiology》1967,42(12):1731-1736
Excised roots of barley (Hordeum vulgare, var. Campana) lost organic acids, amino acids, K+, and Cl within 15 minutes after initiation of anaerobic treatment or treatment with NaCN and 2,4-dinitrophenol. Initial loss of organic acids when roots were placed under N2 is attributed to a decarboxylation reaction, possibly catalyzed by phosphoenolpyruvate carboxykinase. Organic and amino acids began to leak from the roots to the bathing medium after 1 to 2 hours under N2, indicating injury to cell membranes. During the first hour of anaerobic treatment, K+ loss from low-salt roots was equivalent to organic acid loss. Potassium loss from roots containing high levels of KCl was approximately equal to organic acid plus amino acid loss; and Cl loss was approximately equal to amino acid loss. It is postulated that, within cells, organic acids may electrostatically bind an equivalent quantity of cations and that amino acids may bind an equivalent quantity of both cations and anions.  相似文献   

15.
Scott EE  Rothstein DE 《Oecologia》2011,167(2):547-557
The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of 15N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH4 +), and nitrate (NO3 ) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH4 + at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH4 + and NO3 ; high-fertility species acquired the most N from NH4 +. Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.  相似文献   

16.
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals.  相似文献   

17.
Legionella pneumophila survives and replicates within a Legionella-containing vacuole (LCV) of amoebae and macrophages. Less is known about the carbon metabolism of the bacteria within the LCV. We have now analyzed the transfer and usage of amino acids from the natural host organism Acanthamoeba castellanii to Legionella pneumophila under in vivo (LCV) conditions. For this purpose, A. castellanii was 13C-labeled by incubation in buffer containing [U-13C6]glucose. Subsequently, these 13C-prelabeled amoebae were infected with L. pneumophila wild type or some mutants defective in putative key enzymes or regulators of carbon metabolism. 13C-Isotopologue compositions of amino acids from bacterial and amoebal proteins were then determined by mass spectrometry. In a comparative approach, the profiles documented the efficient uptake of Acanthamoeba amino acids into the LCV and further into L. pneumophila where they served as precursors for bacterial protein biosynthesis. More specifically, A. castellanii synthesized from exogenous [U-13C6]glucose unique isotopologue mixtures of several amino acids including Phe and Tyr, which were also observed in the same amino acids from LCV-grown L. pneumophila. Minor but significant differences were only detected in the isotopologue profiles of Ala, Asp, and Glu from the amoebal or bacterial protein fractions, respectively, indicating partial de novo synthesis of these amino acids by L. pneumophila. The similar isotopologue patterns in amino acids from L. pneumophila wild type and the mutants under study reflected the robustness of amino acid usage in the LCV of A. castellannii.  相似文献   

18.
The uptake of L-leucine and L-lysine into vascular smooth muscle cells cultured from the aortas of rats has been investigated. Both amino acids are taken up by saturable systems that are independent of the presence of a ·Na+ gradient and can be stimulated in trans by neutral bulky amino acids for leucine and cationic amino acids for lysine. Leucine uptake is inhibited competitively in cis by several neutral amino acids, whereas lysine uptake is inhibited strongly by other cationic amino acids but also significantly by neutral amino acids such as leucine. The leucine inhibition is noncompetitive. Cells preloaded with leucine and lysine could also export these amino acids and the rate of efflux was stimulated by the presence of appropriate amino acids in trans. These data are all consistent with leucine being transported largely if not entirely by System L and lysine by the System y+ transporter. © 1993 Wiley-Liss, Inc.  相似文献   

19.
A reevaluation of the specificity of system y+, the classical transporter for cationic amino acids is presented. System y+ has been defined as a transporter for cationic amino acids that binds neutral amino acids with lower affinity in the presence of Na+. The discovery of other transporters for cationic amino has suggested that some properties, originally attributed to system y+, may relate to other transport systems. Uncertainty concerns mainly, the affinity for neutral amino acids and the cation dependence of this interaction. Neutral amino acids (13 analogues tested) were found to bind to system y+ in human erythrocytes with very low affinity. Inhibition constants (Kiy, mm) ranged between 14.2 mm and >400 mm, and the strength of interaction was similar in the presence of Na+, K+ or Li+ (145 mm). In choline medium, no interaction was detected up to 20 mm of the neutral amino acid. Guanidinium ion (5 mm, osmolarity maintained with choline) potentiated neutral amino acid binding; the effect was most important in the case of l-norvaline which aligned with guanidinium ion is equivalent to arginine. This suggests cooperative interaction at the substrate site. The specificity of system y+ was shown to be clearly distinct from that of system y+L, a cationic amino acid transporter that accepts neutral amino acids with high affinity in the presence of Na+ and which influenced the classical definition of system y+. Received: 28 September 1998/Revised: 21 December 1998  相似文献   

20.
In this study we found that autotrophic methanococci similar to Methanococcus maripaludis obtained up to 57% of their cellular carbon from exogenous amino acids. About 85% of the incorporation was into protein. Primarily nonpolar and basic amino acids and glycine were incorporated; only small amounts of acidic and some polar amino acids were taken up. An additional 10% of the incorporation was into the nucleic acid fraction. Because little 14CO2 was formed from the 14C-amino acids, little metabolism of the amino acids occurred. Therefore the growth stimulation by amino acids was probably due to the sparing of anabolic energy requirements. Of the amino acids incorporated, only alanine was also a sole nitrogen source for these methanococci. In contrast, Methanococcus vannielii and “Methanococcus aeolicus” are autotrophic methanococci which did not incorporate amino acids and did not utilize alanine as a sole nitrogen source. Although glutamine served as a sole nitrogen source for the autotrophic methanococci and Methanococcus voltae, a heterotrophic methanococcus, growth was due to chemical deamination in the medium. M. voltae requires leucine and isoleucine for growth. However, these amino acids were not significant nitrogen sources, and alanine was not a sole nitrogen source for the growth of M. voltae. The branched-chain amino acids were not extensively metabolized by M. voltae. Pantoyl lactone and pantoic acid were readily incorporated by M. voltae. The intact vitamin pantothenate was neither stimulatory to growth nor incorporated. In conclusion, although amino acids and vitamins are nutritionally important to both autotrophic and heterotrophic methanococci, generally they are not subject to extensive catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号