首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

2.
Tropical nitrogen (N) deposition is projected to increase substantially within the coming decades. Increases in soil emissions of the climate‐relevant trace gases NO and N2O are expected, but few studies address this possibility. We used N addition experiments to achieve N‐enriched conditions in contrasting montane and lowland forests and assessed changes in the timing and magnitude of soil N‐oxide emissions. We evaluated transitory effects, which occurred immediately after N addition, and long‐term effects measured at least 6 weeks after N addition. In the montane forest where stem growth was N limited, the first‐time N additions caused rapid increases in soil N‐oxide emissions. During the first 2 years of N addition, annual N‐oxide emissions were five times (transitory effect) and two times (long‐term effect) larger than controls. This contradicts the current assumption that N‐limited tropical montane forests will respond to N additions with only small and delayed increases in soil N‐oxide emissions. We attribute this fast and large response of soil N‐oxide emissions to the presence of an organic layer (a characteristic feature of this forest type) in which nitrification increased substantially following N addition. In the lowland forest where stem growth was neither N nor phosphorus (P) limited, the first‐time N additions caused only gradual and minimal increases in soil N‐oxide emissions. These first N additions were completed at the beginning of the wet season, and low soil water content may have limited nitrification. In contrast, the 9‐ and 10‐year N‐addition plots displayed instantaneous and large soil N‐oxide emissions. Annual N‐oxide emissions under chronic N addition were seven times (transitory effect) and four times (long‐term effect) larger than controls. Seasonal changes in soil water content also caused seasonal changes in soil N‐oxide emissions from the 9‐ and 10‐year N‐addition plots. This suggests that climate change scenarios, where rainfall quantity and seasonality change, will alter the relative importance of soil NO and N2O emissions from tropical forests exposed to elevated N deposition.  相似文献   

3.
云南热带季雨林及其与热带雨林植被的比较   总被引:2,自引:0,他引:2       下载免费PDF全文
朱华 《植物生态学报》2011,35(4):463-470
在中国植物学文献中, 对热带季雨林的解释和运用是不一致的, 特别是易于把季雨林与热带雨林相混淆。季雨林是在具有明显干、湿季变化的热带季风气候下发育的一种热带落叶森林植被, 是介于热带雨林与热带稀树草原(savanna)之间的一个植被类型。云南的热带季雨林在分布生境、生态外貌特征、植物种类组成和地理成分构成上, 均与热带雨林有明显区别, 季雨林主要分布在海拔1 000 m以下的几大河流开阔河段两岸和河谷盆地, 其群落结构相对简单, 乔木一般仅有1至2层, 上层树种在干季落叶或上层及下层树种在干季都落叶; 在生活型组成上, 季雨林的木质藤本相对较少, 大高位芽植物及地上芽植物很少, 但地面芽植物很丰富, 地下芽植物和一年生植物也相对丰富; 在叶级和叶型特征上, 季雨林植物的小叶和复叶比例相对较高, 分别占到24%和44%; 在植物区系地理成分构成上, 季雨林的热带分布属合计也占绝对优势, 但以泛热带分布属的比例相对较高, 约占到总属数的30%, 热带亚洲至热带非洲分布属的比例也较高, 约占总属数的12%。季雨林的地理成分更为多样性, 起源与发展历史也更复杂和古老。  相似文献   

4.
西双版纳热带山地雨林生物量研究   总被引:3,自引:0,他引:3  
观测了西双版纳山地气候,建立了山地雨林生物量回归方程,调查了海拔1 100~1 820 m范围5块样地(面积0.16~0.25 hm2)的热带山地雨林生物量。结果表明,海拔1 105和1 610 m的年平均温度分别为20.1和16.6℃,年降雨量分别为1 659和2 011 mm,旱季(11~4月)降雨量分别为295和283mm,年平均相对湿度分别为81%和84%;5块样地生物量变化为256.4~368.6 t.hm-2,平均为312.6t.hm-2,其中乔木占97.1%、木质藤本占1.2%、幼树和灌木占1.3%、草本和幼苗占0.4%;采用热带季节雨林生物量回归方程估计山地雨林生物量,会使得总生物量以及树干和树根生物量高估38.3%~61.5%,树枝生物量低估7.6%~30.8%。可见,西双版纳山地海拔增加导致雨季降雨量增加,山地雨林生物量较热带季节雨林降低32.6%,季节雨林生物量方程不适用于山地雨林。  相似文献   

5.
Estimates of global riverine nitrous oxide (N2O) emissions contain great uncertainty. We conducted a meta‐analysis incorporating 169 observations from published literature to estimate global riverine N2O emission rates and emission factors. Riverine N2O flux was significantly correlated with NH4, NO3 and DIN (NH4 + NO3) concentrations, loads and yields. The emission factors EF(a) (i.e., the ratio of N2O emission rate and DIN load) and EF(b) (i.e., the ratio of N2O and DIN concentrations) values were comparable and showed negative correlations with nitrogen concentration, load and yield and water discharge, but positive correlations with the dissolved organic carbon : DIN ratio. After individually evaluating 82 potential regression models based on EF(a) or EF(b) for global, temperate zone and subtropical zone datasets, a power function of DIN yield multiplied by watershed area was determined to provide the best fit between modeled and observed riverine N2O emission rates (EF(a): R2 = 0.92 for both global and climatic zone models, n = 70; EF(b): R2 = 0.91 for global model and R2 = 0.90 for climatic zone models, n = 70). Using recent estimates of DIN loads for 6400 rivers, models estimated global riverine N2O emission rates of 29.6–35.3 (mean = 32.2) Gg N2O–N yr−1 and emission factors of 0.16–0.19% (mean = 0.17%). Global riverine N2O emission rates are forecasted to increase by 35%, 25%, 18% and 3% in 2050 compared to the 2000s under the Millennium Ecosystem Assessment's Global Orchestration, Order from Strength, Technogarden, and Adapting Mosaic scenarios, respectively. Previous studies may overestimate global riverine N2O emission rates (300–2100 Gg N2O–N yr−1) because they ignore declining emission factor values with increasing nitrogen levels and channel size, as well as neglect differences in emission factors corresponding to different nitrogen forms. Riverine N2O emission estimates will be further enhanced through refining emission factor estimates, extending measurements longitudinally along entire river networks and improving estimates of global riverine nitrogen loads.  相似文献   

6.
El Niño–La Niña cycles strongly influence dry and wet seasons in the tropics and consequently nitrous oxide (N2O) emissions from tropical rainforest soils. We monitored whole‐system and soil chamber N2O fluxes during 5‐month‐long droughts in the Biosphere 2 tropical forest to determine how rainfall changes N2O production. A consistent pattern of N2O flux changes during drought and subsequent wetting emerged from our experiments. Soil surface drying during the first days of drought, presumably increased gas transport out of the soil, which increased N2O fluxes. Subsequent drying caused an exponential decrease in whole‐system (4.0±0.1% day?1) and soil chamber N2O flux (8.9±0.8% day?1; south chamber; and 13.7±1.1% day?1; north chamber), which was highly correlated with soil moisture content. Soil air N2O concentration ([N2O]) and flux measurements revealed that surface N2O production persisted during drought. The first rainfall after drought triggered a N2O pulse, which amounted to 25% of drought‐associated reduction in N2O flux and 1.3±0.4% of annual N2O emissions. Physical displacement of soil air by water and soil chemistry changes during drought could not account for the observed N2O pulse. We contend that osmotic stress on the microbial biomass must have supplied the N source for pulse N2O, which was produced at the litter–soil interface. After the pulse, N2O fluxes were consistently 90% of predrought values. Nitrate change rate, nutrient, [N2O], and flux analyses suggested that nitrifiers dominated N2O production during the pulse and denitrifiers during wet conditions. N2O flux measurements in Biosphere 2, especially during the N2O pulse, demonstrate that large‐scale integration methods, such as flux towers, are essential for improving ecosystem N2O flux estimates.  相似文献   

7.
Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56±0.22) Mg C ha−1yr−1, integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62±0.23) Mg C ha−1yr−1). The carbon density varied between (201.43±29.38) Mg C ha−1 and (229.16±39.2) Mg C ha−1, and averaged (214.17±32.42) Mg C ha−1 for plot P9201. Plot P8302, however, varied between (223.95±45.92) Mg C ha−1 and (254.85±48.86) Mg C ha−1, and averaged (243.35±47.64) Mg C ha−1. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.  相似文献   

8.
Hurricane-induced nitrous oxide fluxes from a wet tropical forest   总被引:2,自引:0,他引:2  
Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm−2 h−1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.  相似文献   

9.
Fine root dynamics have the potential to contribute significantly to ecosystem‐scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root dynamics on two soil types in a lowland moist Amazonian forest, and determined the effect of root decay on rates of C and N trace gas fluxes. Root production averaged 229 (±35) and 153 (±27) g m?2 yr?1 for years 1 and 2 of the study, respectively, and did not vary significantly with soil texture. Root decay was sensitive to soil texture with faster rates in the clay soil (k=?0.96 year?1) than in the sandy loam soil (k=?0.61 year?1), leading to greater standing stocks of dead roots in the sandy loam. Rates of nitrous oxide (N2O) emissions were significantly greater in the clay soil (13±1 ng N cm?2 h?1) than in the sandy loam (1.4±0.2 ng N cm?2 h?1). Root mortality and decay following trenching doubled rates of N2O emissions in the clay and tripled them in sandy loam over a 1‐year period. Trenching also increased nitric oxide fluxes, which were greater in the sandy loam than in the clay. We used trenching (clay only) and a mass balance approach to estimate the root contribution to soil respiration. In clay soil root respiration was 264–380 g C m?2 yr?1, accounting for 24% to 35% of the total soil CO2 efflux. Estimates were similar using both approaches. In sandy loam, root respiration rates were slightly higher and more variable (521±206 g C m2 yr?1) and contributed 35% of the total soil respiration. Our results show that soil heterotrophs strongly dominate soil respiration in this forest, regardless of soil texture. Our results also suggest that fine root mortality and decomposition associated with disturbance and land‐use change can contribute significantly to increased rates of nitrogen trace gas emissions.  相似文献   

10.
畜禽粪便好氧堆肥过程氧化亚氮排放机制   总被引:8,自引:0,他引:8  
好氧堆肥是实现畜禽粪便处理及资源化的有效途径,但畜禽粪便好氧堆肥过程是全球温室气体N2O的潜在来源,与全球温室效应和大气臭氧空洞等问题密切相关.随着畜禽养殖规模的扩大和畜禽粪便堆肥产量的急剧提升,畜禽粪便好氧堆肥过程N2O排放问题日趋严重,堆肥过程N2O排放机制机理研究引发学者们的关注.本文综述了畜禽粪便好氧堆肥过程中N2O的产生途径、排放规律、排放影响因素及其相关微生物学机理研究动态,总结了该过程中减排N2O的措施,并对该领域的研究趋势进行了展望.  相似文献   

11.
Production of nitrous oxide (N2O) was studied in one peaty and one sandy soil undergoing wetting and drying cycles. The background concentration of N2O in the soil was compared with the N2O produced during 4 hours of incubation with and without addition of acetylene. The concentration of N2O in the soil under flooded conditions was relatively stable, and net consumption of N2O was observed as often as net production. The reference area and drained soils showed somewhat different patterns compared to the flooded soils, which was probably an effect of intermediate soil water conditions. During flooding, the nitrous oxide made up less than 1% of total denitrification on 50% and 54% of the sampling occasions for the peaty and the sandy soil, respectively, and N2O/(N2O+N2)-ratios exceeded 0.2 on only 6% and 3% of the sampling occasions. Under drained conditions and in the reference areas, the ratios showed a more even frequency distribution. Grouping the nitrous oxide production data for different seasons and field conditions, we found few seasonal trends. At the sandy site, mean production of N2O was larger during the winter months. There were weak correlations between N2O production and floodwater nitrate concentration, and between N2O production and soil temperature. N2O production in the reference area varied between consumption and 4.6 kg N ha–1 month–1 and in flooded and drained soil between consumption and 2.6 kg N ha–1 month–1.  相似文献   

12.
Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification – a potential source of the potent greenhouse gas, nitrous oxide (N2O) – and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2O. Measurements of net N2O fluxes alone yield little insight into the different effects of redox conditions on N2O production and consumption. We used in situ measurements of gross N2O fluxes across a salt marsh elevation gradient to determine how soil N2O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid‐marshes relative to the high marsh (P < 0.001). Net N2O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m?2 h?1, ?2.2 ± 0.9 μg N m?2 h?1, and 0.67 ± 0.57 μg N m?2 h?1 in the low, mid, and high marshes, respectively. Both net N2O release and uptake were observed in the low and high marshes, but the mid‐marsh was consistently a net N2O sink. Gross N2O production was highest in the low marsh and lowest in the mid‐marsh (P = 0.02), whereas gross N2O consumption did not differ among marsh zones. Thus, variability in gross N2O production rates drove the differences in net N2O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2O in salt marshes to improve our predictions of changes in net N2O fluxes caused by future sea level rise.  相似文献   

13.
海南岛霸王岭热带低地雨林植被恢复动态   总被引:3,自引:1,他引:3       下载免费PDF全文
热带次生林具有重要的物种保育和固碳功能, 然而高强度的干扰会导致次生林早期出现类似季雨林的阶段, 因而群落恢复速度和方向是当前热带生态学研究中最为关注的议题之一。该文以海南岛在刀耕火种弃耕地形成的不同演替阶段的次生林为研究对象, 比较森林不同恢复时间(12年、25年、55年)群落中的不同年龄(幼树、小树、成年树)个体与低地雨林老龄林的物种组成、多样性和群落结构差异, 探讨刀耕火种弃耕地恢复过程中的群落组配过程。首先, 在海南岛霸王岭林区内建立7个1 hm2(100 m × 100 m)的样地, 并调查样地内所有胸径≥ 1 cm的木本植物个体(不包括木质藤本)的种类、胸径大小和树高。无度量多维标定法(NMS)排序结果表明, 刀耕火种弃耕地恢复群落与老龄林的物种组成存在明显差异, 并且其物种组成差异随着径级增加而逐渐减小。刀耕火种弃耕地群落物种累积速度缓慢, 25年和55年恢复群落的种面积、种个体和种多度曲线无差异, 存在一个明显的停滞阶段。与物种组成相比, 群落结构恢复相对较迅速, 但仍没有形成老龄林阶段中的复杂结构。萌生个体在早期恢复群落中占有较高比例, 其个体密度和胸高断面积分别占总数的39.9%和55.9%, 但在恢复中后期迅速降低。刀耕火种弃耕地恢复群落中以先锋种和非先锋喜光种为主。虽然耐阴种随演替而逐渐增加, 但恢复中后期群落中的耐阴种重要值仅为老龄林的27.7%。这些结果表明, 虽然刀耕火种弃耕地恢复群落缓慢地逐渐接近最终恢复目标, 但仍然存在 很大的不确定性。刀耕火种弃耕地恢复过程中的异速恢复和停滞阶段需要纳入今后群落演替模型构建和森林固碳效益核甘共苦算中。  相似文献   

14.
1. The distribution patterns of sandflies (Diptera: Psychodidae) upon tree buttresses were studied in tropical rain forest at Finca la Selva in the Caribbean lowlands of Costa Rica. 2. Four species of sandfly, Lutzomyia shannoni Dyar, L. trapidoi F. & H., L. ylephiletor F. & H. and L. vespertilionis F. & H. comprising 97% of those caught, used tree buttresses as diurnal resting sites. Their distribution on the buttresses was aggregated. 3. During the dry season tree species had no significant effect upon the distribution of the sandflies. However, during the wet season the distributions of two of the species, L. trapidoi and L. ylephiletor, were significantly affected by the species of tree; it is suggested that some species of tree may provide greater protection from rainfall than others. 4. L. vespertilionis was restricted to a single buttress on each positive tree. Distribution of this species is evidently determined by the distribution of its host animal, the bat (Emballonuridae). Female flies feed upon the bat's blood and male flies may be attracted to the bat as it provides a source of female sandflies. It is suggested, therefore, that tree buttresses serve as sandfly swarming sites. 5. Within a large buttress the sandflies are not randomly distributed but are aggregated in particular areas. Within these aggregations, the sandflies are vertically zoned upon the buttress with a shift in species composition with height. Two hypothesis were suggested to account for this distribution pattern: a response to an environmental gradient or an interaction between the four species of fly.  相似文献   

15.
海南五指山热带山地雨林植物物种多样性研究   总被引:35,自引:4,他引:35  
王指山热带山地雨林的物种种类十分丰富,在1hm^2样地中共出现54个科,100个属的乔木树种177种,1337个个体。区系地理分析表明属的分布区类型以热带分布型成分占优,为89.0%,充分体现了五指山山地雨林的热带性质。多样性指数分析结果为:样地1Margalef指数17.822,Shannon-Wiener指数5.621,均匀度0.823,Simpson指数0.050,均匀度6.775,表明五指  相似文献   

16.
From spring 2000 through fall 2001, we measured nitric oxide (NO) and nitrous oxide (N2O) fluxes in two temperate forest sites in Massachusetts, USA that have been treated since 1988 with different levels of nitrogen (N) to simulate elevated rates of atmospheric N deposition. Plots within a pine stand that were treated with either 50 or 150 kg N ha?1 yr?1 above background displayed consistently elevated NO fluxes (100–200 µg N m?2 h?1) compared to control plots, while only the higher N treatment plot within a mixed hardwood stand displayed similarly elevated NO fluxes. Annual NO emissions estimated from monthly sampling accounted for 3.0–3.7% of N inputs to the high‐N plots and 8.3% of inputs to the Pine low‐N plot. Nitrous oxide fluxes in the N‐treated plots were generally < 10% of NO fluxes. Net nitrification rates (NRs) and NO production rates measured in the laboratory displayed patterns that were consistent with field NO fluxes. Total N oxide gas flux was positively correlated with contemporaneous measurements of NR and concentration. Acetylene inhibited both nitrification and NO production, indicating that autotrophic nitrification was responsible for the elevated NO production. Soil pH was negatively correlated with N deposition rate. Low levels (3–11 µg N kg?1) of nitrite () were detected in mineral soils from both sites. Kinetic models describing NO production as a function of the protonated form of (nitrous acid [HNO2]) adequately described the mineral soil data. The results indicate that atmospheric deposition may generate losses of gaseous NO from forest soils by promoting nitrification, and that the response may vary significantly between forest types under similar climatic regimes. The lowering of pH resulting from nitrification and/or directly from deposition may also play a role by promoting reactions involving HNO2.  相似文献   

17.
The values and variation characteristics of energy components, their relationship with net radiation and the characteristics of water balance in the forest were analyzed, based on the observation data of energy fluxes, meteorological parameters and biomass in a tropical seasonal rain forest in Xishuangbanna from January 2003 to December 2004. The results show that annual net radiation was 3516.4 MJ/(m2 · a) and 3516.6 MJ/(m2 · a) in 2003 and 2004, respectively, of which 46% and 44% were used in latent heat flux, and 12% and 11% were lost as sensible heat flux. Annual mean canopy surface conductance was 10.3 mm/s and 10.0 mm/s in 2003 and 2004, respectively. Moreover, canopy surface conductance was lower in dry-hot seasons than in fog-cool and rainy seasons. Canopy surface conductance correlated significantly and positively with leaf area index, but negatively with water vapor pressure deficit. In general, canopy surface conductance was not affected directly by soil water content, but highly depended on soil moisture status when soil water content was below 0.15 m3/m3. Annual total evapotranspiration of this forest ecosystem in dry seasons was lower than that in rainy seasons, which was considered as one of the most important reasons that tropical seasonal rain forest could survive and flourish in Xishuangbanna at limit of water and heat.  相似文献   

18.
西双版纳热带季节雨林水热通量   总被引:5,自引:1,他引:5  
利用西双版纳热带季节雨林2003和2004年常规气象、生物量以及水热通量观测资料,对该林地两年内各能量分量的数值大小和变化规律、能量分配以及水量平衡特征等进行了分析研究。结果表明,2003和2004年净辐射总量分别为3516.4MJ/(m.2a)和3516.6MJ/(m.2a)。在能量分配过程中潜热通量占优势,2003年和2004年的总量分别是相应年份净辐射总量的46%和44%,显热通量则分别只有12%和11%。2003年和2004年林冠传导率均值分别为10.3mm/s和10.0mm/s,其中干热季期间的林冠传导率明显低于雾凉季和雨季。林冠传导率与叶面积指数和空气饱和水汽压差值之间分别呈极显著的正、负线性相关关系;它基本上不受土壤含水量的影响,只是当长期无雨或雨量很小导致土壤含水量低于0.15m3/m3时,林冠传导率才与土壤含水量间存在极显著的相关关系。西双版纳热带雨林2003和2004年的蒸散量分别是663mm和634mm,受浓雾和林冠传导率的综合影响,该森林生态系统干季蒸散量低于雨季,这是西双版纳热带季节雨林能够在水热极限条件下生存并良好发育的重要原因。  相似文献   

19.
Dou J X  Zhang Y P  Yu G R  Zhao S J  Song Q H 《农业工程》2007,27(8):3099-3109
The values and variation characteristics of energy components, their relationship with net radiation and the characteristics of water balance in the forest were analyzed, based on the observation data of energy fluxes, meteorological parameters and biomass in a tropical seasonal rain forest in Xishuangbanna from January 2003 to December 2004. The results show that annual net radiation was 3516.4 MJ/(m2 · a) and 3516.6 MJ/(m2 · a) in 2003 and 2004, respectively, of which 46% and 44% were used in latent heat flux, and 12% and 11% were lost as sensible heat flux. Annual mean canopy surface conductance was 10.3 mm/s and 10.0 mm/s in 2003 and 2004, respectively. Moreover, canopy surface conductance was lower in dry-hot seasons than in fog-cool and rainy seasons. Canopy surface conductance correlated significantly and positively with leaf area index, but negatively with water vapor pressure deficit. In general, canopy surface conductance was not affected directly by soil water content, but highly depended on soil moisture status when soil water content was below 0.15 m3/m3. Annual total evapotranspiration of this forest ecosystem in dry seasons was lower than that in rainy seasons, which was considered as one of the most important reasons that tropical seasonal rain forest could survive and flourish in Xishuangbanna at limit of water and heat.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号