首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vitamin K cycle previously described in liver has been demonstrated in Swiss 3T3 mouse fibroblasts. Vitamin K epoxide and gamma-carboxyglutamic acid were isolated from the cells and chemically characterized. Menaquinone (MK4) is also metabolized to its epoxide and vitamin K epoxide is reduced to vitamin K in these cells. Thus Swiss 3T3 mouse fibroblasts provide a useful model system for the study of vitamin K metabolism. Possible functions of the vitamin K-dependent protein(s) in fibroblasts are discussed.  相似文献   

2.
3.
Summary Injections of thioacetamide (T.A.) were given to rats and its effects on protein and RNA metabolism of liver cells was studied. Through the radioautographic method it was possible to observe the effects of T.A. on cytoplasm, chromatin, and nucleolus.The results show that T.A., when injected into rats, increases the amino acid incorporation into liver cell cytoplasm, chromatin, and nucleolus. This was observed by injecting either leucine-H3 or phenylalanine-H3 into rats previously treated with T.A., or by incubating liver slices with phenylalanine-H3.The effects of T.A. on RNA synthesis were studied by incubating liver slices of T.A. injected and control rats with adenine-H3. T.A. was also added to some flasks and incubated with liver slices from control and T.A. injected rats. The effect of the drug, when injected, was to increase the uptake of adenine-H3. Added to the incubation medium in the concentration of 10–3 M, T.A. decreased the incorporation of adenine-H3. Ribonuclease digestion permitted to separate adenine-H3 incorporation into RNA, from the incorporation into DNA, which was very low in these experiments.  相似文献   

4.
The responsiveness of the adult toad to triiodothyronine (T3) and thyroxine (T4) was studied by measuring the mitochondrial alpha-glycerophosphate dehydrogenase activity and mitochondrial protein content of liver, muscle and brain of toad. Both T3 and T4 increased the alpha-GPD activity and mitochondrial protein content of liver and muscle of toad. The extent of increase in the alpha-GPD activity and mitochondrial protein content were more pronounced with T3 than with T4. Further that the muscle exhibited more alpha-GPD activity than liver, whenever liver showed greater mitochondrial protein content than that of muscle. Brain showed no significant change in the alpha-GPD activity and mitochondrial protein content. Injections of cycloheximide showed inhibition of T3 induced changes in liver and muscle. Injection of propylthiouracil also counteracted the T4 induced effects of liver and muscle.  相似文献   

5.
6.
Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue.  相似文献   

7.
To assess the role of triiodothyronine (T3) in mediating short-term changes in metabolism, such as those occurring in circadian patterns, we examined the effects of intraperitoneal injection of T3 on the oxidation of substrates by isolated mitochondria from liver of the bowfin, Amia calva, and red muscle and liver of the lake char, Salvelinus namaycush. Selected enzymes were measured in red muscle and liver of the lake char. Three hours after intraperitoneal injection of T3, oxidation of some substrates by mitochondria isolated from the liver of the bowfin was reduced. Similar treatment had no effect on substrate oxidation in liver mitochondria isolated from lake char. Oxidation of substrates by lake char red muscle mitochondria was stimulated by T3 injection. Citrate synthase levels were increased in red muscle suggesting that changes in enzyme activity may be in part responsible for the short-term mitochondrial responses to T3 injection.  相似文献   

8.
T3 potently influences cholesterol metabolism through the nuclear thyroid hormone receptor beta (TRbeta), the most abundant TR isoform in rodent liver. Here, we have tested if TRalpha1, when expressed at increased levels from its normal locus, can replace TRbeta in regulation of cholesterol metabolism. By the use of TRalpha2-/-beta-/- animals that overexpress hepatic TRalpha1 6-fold, a near normalization of the total amount of T3 binding receptors was achieved. These mice are similar to TRbeta-/- and TRalpha1-/-beta-/- mice in that they fail to regulate cholesterol 7alpha-hydroxylase expression properly, and that their serum cholesterol levels are unaffected by T3. Thus, hepatic overexpression of TRalpha1 cannot substitute for absence of TRbeta, suggesting that the TRbeta gene has a unique role in T3 regulation of cholesterol metabolism in mice. However, examination of T3 regulation of hepatic target genes revealed that dependence on TRbeta is not general: T3 regulation of type I iodothyronine deiodinase and the low density lipoprotein receptor were partially rescued by TRalpha1 overexpression. These in vivo data show that TRbeta is necessary for the effects of T3 on cholesterol metabolism. That TRalpha1 only in some instances can substitute for TRbeta indicates that T3 regulation of physiological and molecular processes in the liver occurs in an isoform-specific fashion.  相似文献   

9.
Glycolipid metabolism disorder is one of the causes of type 2 diabetes (T2D). Alternate-day fasting (ADF) is an effective dietary intervention to counteract T2D. The present study is aimed to determine the underlying mechanisms of the benefits of ADF metabolic on diabetes-induced glycolipid metabolism disorders in db/db mice. Here, leptin receptor knock-out diabetic mice were subjected to 28 days of isocaloric ADF. We found that ADF prevented insulin resistance and bodyweight gain in diabetic mice. ADF promoted glycogen synthesis in both liver and muscle. ADF also activated recombinant insulin receptor substrate-1 (IRS-1)/protein kinase B (AKT/PKB) signaling,inactivated inflammation related AMP-activated protein kinase (AMPK) and the inflammation-regulating nuclear factor kappa-B (NF-κB) signaling in the liver. ADF also suppressed lipid accumulation by inactivating the expression of peroxisome proliferator–activated receptor gamma (PPAR-γ) and sterol regulatory element-binding protein-1c (SREBP-1c). Furthermore, ADF elevated the expression of fibroblast growth factor 21 (FGF21) and down-stream signaling AMPK/silent mating type information regulation 2 homolog 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in the liver of diabetic mice. The mitochondrial biogenesis and autophagy were also stimulated by ADF. Interestingly, ADF also enhanced the bile acids (BAs) metabolism by generating more cholic acid (CA), deoxycholic acid (DCA) and tauroursodeoxycholic acid (TUDCA) in db/db mice. In conclusion, ADF could significantly inhibit T2D induced insulin resistance and obesity, promote insulin signaling,reduce inflammation, as well as promote glycogen synthesis and lipid metabolism. It possibly depends on FGF21 and BA metabolism to enhance mitochondrial biosynthesis and energy metabolism.  相似文献   

10.
Rats were fed selenium-deficient (less than 0.005 mg selenium/kg) or selenium-supplemented diets (0.1 mg selenium/kg, as Na2SeO2) for up to five wks from weaning to assess the effects of developing selenium deficiency on the metabolism of thyroid hormones. Within two wks 3:5,3'-triiodothyronine (T3) production from thyroxine (T4) in liver homogenates from selenium-deficient rats was significantly lower compared with the activity in liver homogenates from selenium-supplemented rats. This decreased activity was probably responsible, in part, for the higher T4 and lower T3 concentrations in plasma from the selenium-deficient rats after 3, 4, and 5 weeks of experiment. Repletion of selenium-deficient rats with single intra-peritoneal injections of 200 micrograms selenium/kg body wt. (as Na2SeO3) 5 days before sampling reversed the effects of the deficiency on thyroid hormone metabolism and significantly increased liver and plasma glutathione peroxidase activities. However a dose of 10 micrograms selenium/kg body wt given to rats of similar low selenium status had no effect on thyroid hormone metabolism or glutathione peroxidase activity but did reverse the increase in hepatic glutathione S-transferase activity characteristic of severe selenium deficiency. Imbalances in thyroid hormone metabolism are an early consequence of selenium deficiency and are probably not related to changes in hepatic xenobiotic metabolizing enzymes associated with severe deficiency.  相似文献   

11.
Dai J  Li P  Ji Ch  Feng C  Gui M  Sun Y  Zhang J  Zhu J  Dou Ch  Gu Sh 《Molekuliarnaia biologiia》2005,39(5):799-805
The short-chain dehydrogenases/reductases (SDRs) play important roles in body's metabolism. We cloned a novel mouse SDR cDNA which encodes a deduced HSD-like protein with a conserved SDR domain and a SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

12.
13.
Molecular cloning and characterization of the murine bile salt export pump   总被引:7,自引:0,他引:7  
Green RM  Hoda F  Ward KL 《Gene》2000,241(1):117-123
Hepatic bile salt secretion and bile formation are essential functions of the mammalian liver, and the rate-limiting step of hepatocellular secretion of bile salts is canalicular secretion. Recently, the rat sister-of-p-glycoprotein/bile salt export pump (spgp/BSEP) was demonstrated to encode for the rat ATP-dependent canalicular bile salt export protein, and mutations of human BSEP were identified as the cause of PFIC 2. Since mouse models are vital for studies in hepatocellular transport and metabolism, cloning and characterization of the murine gene are essential. In this study, we have cloned a full-length, functional cDNA for the mBsep. The deduced amino acid sequence encodes for a 1321-amino-acid protein and is 94% similar to rat and 89% similar to human bsep. Western immunoblotting using an antibody directed against a carboxy-terminal peptide of mbsep protein reveals a 160kDa protein, which is highly enriched in mouse canalicular membranes. Transfection of mBSEP into Sf-9 insect cells or mammalian Balb-3T3 cells confers functional transport of the bile salt taurocholate. The mBsep mRNA is expressed in murine liver, but not in other tissues. Hepatic mBsep levels appear highly regulated, being markedly diminished in both LPS and estrogen models of cholestasis. These data are important for further murine studies of hepatocellular transport physiology and metabolism.  相似文献   

14.
The present work was carried out to evaluate the kinetic parameters of glucagon in growing rats divided into three groups: T, H and E. Group T (Control group) was fed a control diet (crude protein: 11.8%). Groups H and E received a high protein diet (crude protein: 19%) distributed in either equal (Group H) or restricted amounts (Group E) with respect to the control. Thus, the main characteristic of Group H was the high level of protein intake (+ 68%) when Group E rats underwent a moderate increase in protein intake but a striking caloric deprivation (-25%). In all cases, the animals were fed a meal every 4 hours. The kinetic parameters of glucagon metabolism were estimated from the plasma disappearance curves of 125I-glucagon for five minutes following a pulse injection of purified 125I-glucagon (1 muCi, about 3.8 ng/100 g BW). Plasma 125I-glucagon was measured after gel filtration of plasma on Biogel P-10. Tissue radioactivity (mainly liver and kidneys) was recorded seven minutes after 125I-glucagon injection. The results showed that the plasma 125I-glucagon level was higher in Group H than in the other groups 1 min after the injection. At all other times (2, 3.5 and 5 min) it was similar in all groups. 125I-glucagon was rapidly cleared from plasma and rapidly taken up by the liver and kidneys. In the 3 experimental groups, mean half-life and metabolic clearance rate were estimated to be 2 min and 6 ml/min/100 g BW, respectively. Excess protein intake resulted in a reduction in the apparent initial distribution volume of 125I-glucagon without modifying significantly its turn-over rate and metabolic clearance rate. Kidneys and liver (6% BW) accounted for about 20% of the 125I-glucagon uptake by tissues 7 min after injection. Group H kidneys and liver were more labelled than in other groups. These results suggest that increased protein intake (without further caloric deprivation) can induce some changes in glucagon metabolism which could partially contribute to the increase in glucagonemia usually observed in animals fed high protein diets.  相似文献   

15.
2型糖尿病(type 2 diabetes mellitus, T2DM)是一种在全球范围内广泛存在的代谢性疾病,不及时治疗可能会引发众多危及生命的并发症。肝脏代谢在糖尿病发生发展的过程中扮演着至关重要的角色。目前已有报道中药知母用于缓解胰岛素抵抗及糖尿病,但其能否缓解糖尿病中肝脏代谢的异常仍有待深入研究。因此,提取了高脂饮食和化学药物链脲佐菌素(streptozotocin, STZ)诱导的2型糖尿病大鼠模型、知母提取物处理的2型糖尿病大鼠模型、高脂饮食大鼠模型以及正常饮食大鼠对照组的肝脏蛋白,通过基于质谱的定量蛋白质组学串联质量标签(tandem mass tag, TMT)标记技术获得定量蛋白质组数据。利用生物信息学软件对各组数据进行层次聚类分析及主成分分析,并以P<0.05,差异倍数(fold change)>1.5作为阈值标准进行火山图分析,发现知母提取物治疗组相较未治疗组与正常对照组更接近,表明肝脏组织定量蛋白质组数据能够反映知母提取物对2型糖尿病大鼠模型的治疗效果。筛选获得了表达水平与知母提取物治疗密切相关的关键蛋白簇。利用在线网站分析蛋白簇的GO功能与KEG...  相似文献   

16.
The short-chain dehydrogenases/reductases (SDRs) play an important role in the body's metabolism. We have cloned a novel mouse SDR cDNA, which encodes a deduced HSD-like protein with a conserved SDR domain and an SCP2 domain. The 1.8 kb cDNA consists of 11 exons and is mapped to mouse chromosome 4B3. The corresponding gene is widely expressed in normal mouse tissues and its expression level in the liver increases after inducement with cholesterol food. The predicted mouse HSDL2 protein, which has a peroxisomal target signal, is localized in the cytoplasm of NIH 3T3 cells.  相似文献   

17.
Microsomal triglyceride transfer protein (MTP) is a carrier of triglyceride essential for the assembly of apolipoprotein (apo)B-containing lipoproteins by the liver and the small intestine. Its role in triglyceride transfer in tissues that do not secrete lipoproteins has not been explored. In particular, MTP would seem to be a candidate for a role in triglyceride metabolism within the adipocyte. To test this hypothesis, we probed adipocytes for the presence of MTP. Immunohistochemical and biochemical studies demonstrate MTP in adipocytes from brown and white fat depots of mice and human, as well as in 3T3-L1 cells. Confocal microscopy revealed MTP throughout 3T3 cells; however, MTP fluorescence was prominent in juxtanuclear areas. In differentiated 3T3 cells MTP fluorescence was very striking around lipid droplets. In vitro lipid transfer assays demonstrated the presence of triglyceride transfer activity within microsomal fractions isolated from rat adipose tissue. In addition, quantitative rtPCR studies showed that MTP expression in mouse white fat depots was approximately 1% of MTP expression in mouse liver. MTP mRNA in differentiated 3T3 cells was approximately 13% of liver expression. Our results provide unequivocal evidence for the presence of MTP in adipocytes and present new possibilities for defining the mechanisms by which triglyceride is stored and/or hydrolyzed and mobilized.  相似文献   

18.
The role of the rat liver plasma membrane in the regulation of uptake and subsequent deiodination of thyroxine (T4) or the biologically active thyroid hormone 3,3',5-triiodothyronine (T3) was investigated. Here we report on the production of monoclonal antibodies raised against rat hepatocytes. Two antibodies were selected. Antibody ER-22 did bind to a Mr 52,000 membrane protein and inhibited the 1- and 5-min uptake of both T4 and T3 by primary cultured rat hepatocytes in a dose-dependent fashion. As the uptake of T4 and T3 depends on the presence of a sodium gradient over the plasma membrane, the inhibitory potency of ER-22 on the Na+,K+-ATPase activity was investigated. No inhibition of the uptake of 86Rb+ could be determined, indicating that antibody ER-22 is not directed against the Na+,K+-ATPase but probably the carrier protein itself. Clearance of T3 from the medium and concomitant iodide production by cultured rat hepatocytes during a 20-h incubation in the presence of ER-22 were both inhibited by 50% with respect to a control incubation in the absence of monoclonal antibody, pointing to the importance of carrier-mediated transport in cellular uptake and metabolism of T3. A second monoclonal antibody did bind to two other plasma membrane proteins but did not inhibit transport of thyroid hormone.  相似文献   

19.
The effects of triiodothyronine (T3)-induced hyperthyroidism and of carbimazole (CZ)-produced hypothyroidism on lipid metabolism were studied in Nubian goats (Capra hircus). T3 treatment decreased the serum, liver and heart triglyceride, cholesterol and phospholipid concentrations. These changes were accompanied by an increase in the activity of lipoprotein lipase (LPL) in the heart and skeletal muscles. CZ treatment at a dose of 90 mg/goat significantly increased the serum triglyceride, liver cholesterol and heart phospholipid. CZ treatment significantly increased the liver and heart triglyceride concentration but the activity of LPL was not affected.  相似文献   

20.
长爪沙鼠冷驯化过程中甲状腺激素的变化   总被引:4,自引:2,他引:4  
22℃室温中的长爪沙鼠血清T3和T4浓度较低,肝脏和褐色脂肪组织(BAT)的T45'-脱碘酶活力也较低。冷暴露(4℃)1d 后,血清T3与T4浓度迅猛增长,随后1-4周的冷驯化中,T3缓慢上升,T4逐渐下降,肝脏和BAT 的T45'-脱碘酶活力变化与血清T3和T3\T4变化一致。表明冷驯化激活了甲状腺功能,激活了外周组织中的甲状腺激素代谢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号