首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To produce ethanol more economically than in a conventional process, it is necessary to attain high productivity and low production cost. To this end, a continuous ethanol production from sago starch using immobilized amylogucosidase (AMG) and Zymomonas mobilis cells was studied. Chitin was used for immobilization of AMG and Z. mobilis cells were immobilized in the form of sodium alginate beads. Ethanol was produced continuously in an simultaneous saccharification and ethanol fermentation (SSF) mode in a pacekd bed reactor. The maximum ethanol productivity based on the void volume, Vv, was 37 g/l/h with ethanol yield, Yp/s, 0.43 g/g (84% of the theoretical ethanol yield) in this system. The steady-state concentration of ethanol (46 g/l could be maintained in a stable manner over two weeks at the dilution rate of 0.46 h.  相似文献   

2.
The kinetics of transformation of Zymomonas mobilis with plasmid DNA using a modification of the CaCl2 procedure for transformation of Escherichia coli was investigated. Transformation by the plasmid, pNSW301, followed second-order kinetics indicating that two molecules react co-operatively to produce a single transformant.  相似文献   

3.
A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with -amylase, a series of Michaelis-Menten equations were obtained. After determining kinetic parameters from the results of simple experiments carried out at various substrate and enzyme concentrations and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results.List of Symbols g/g rate coefficient of production - max 1/h maximum specific growth rate - E %, v/w AMG concentration - G 1 mmol/l glucose concentration - G c mmol/l glucose concentration consumed - G f mmol/l glucose concentration formed - G n mmol/l n-mer maltooligosaccharide concentration - K i g/l ethanol inhibition constant for ethanol production - K g mmol/l glucose inhibition constant for glucose production - K p mmol/l glucose limitation constant for ethanol production - K x mmol/l glucose limitation constant for cell growth - K m,n mmol/l Michaelis-Menten constant for n-mer oligosaccharide - k e %, v/w enzyme limitation constant - k es proportional constant - k max, n 1/s maximal velocity for n-mer digestion - k s g/l substrate limitation constant - m s g/g maintenance energy - MW n g/mol molecular weight of n-mer oligosaccharide - P g/l ethanol concentration - P 0 g/l initial ethanol concentration - P m g/l maximal ethanol concentration - Q pm g/(g · h) maximum specific ethanol production rate - S n mmol/h branched n-mer oligosaccharide concentration - S 0 g/l initial starch concentration - S sta g/l starch concentration - S tot g/l total sugar concentration - V max, n 1/h maximum digestion rate of n-mer oligosaccharide - V 0 g/(l · h) initial glucose formation rate - X g/l cell mass - X 0 g/l initial cell mass - Y p/s g/g ethanol yield - Y x/s g/g cell mass yield  相似文献   

4.
Zymomonas mobilis is a natural ethanologen with many desirable industrial biocatalyst characteristics. In this review, we will discuss work to develop Z. mobilis as a model system for biofuel production from the perspectives of substrate utilization, development for industrial robustness, potential product spectrum, strain evaluation and fermentation strategies. This review also encompasses perspectives related to classical genetic tools and emerging technologies in this context.  相似文献   

5.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

6.
Cephalosporium sp. KM388 produced two kinds of extracellular alkaline proteinases (C and D) in complex medium. Proteinases C and D were purified 263 and 195-fold, respectively, to an electrophoretically homogeneous state from the culture broth by hydrophobic adsorption on Butyl- Toyopearl 650M with 30% saturated ammonium sulfate and.chromatographies on DEAE- Sepharose Cl-6B, DEAE-Toyopearl 650 m, CM-Sepharose Cl-6B, and Sephadex G-75. The molecular weights of proteinases C and D were 22,000 and 24,000, respectively, by gel filtration. The isoelectric points were observed as pi > 10.5 for proteinase C and pi = 3.8 for proteinase D. The pH optima for the proteolytic activity of proteinases C and D were 11 and 10, respectively. Proteinase C was unstable below pH 10 but was stabilized by Ca2+ or Mg2 +. Proteinase D was stable above pH 7. Proteinase C was inhibited only by Hg2 +, but proteinase D was inhibited by Mn2 + and Zn2 + in addition to Hg2 +. Both proteinases were inhibited strongly by chymostatin, weakly by DFP and PMSF, but little by PCMB, MIA, EDTA, and SDS. These enzymes showed very high activity against BTEE but low activities against BAEE and TAME as well as Bz-ala-OMe.  相似文献   

7.
Y J Kim  K B Song    S K Rhee 《Journal of bacteriology》1995,177(17):5176-5178
Membrane vesicles prepared from Zymomonas mobilis oxidized NADH exclusively, whereas deamino-NADH was little oxidized. In addition, the respiratory chain-linked NADH oxidase system exhibited only a single apparent Km value of approximately 66 microM for NADH. The NADH oxidase was highly sensitive to the respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide. However, the NADH:quinone oxidoreductase was not sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide and was highly resistant to another respiratory chain inhibitor, rotenone. Electron transfer from NADH to oxygen generated a proton electrochemical gradient (inside positive) in inside-out membrane vesicles. In contrast, electron transfer from NADH to ubiquinone-1 generated no electrochemical gradient. These findings indicate that Z. mobilis possesses only NADH:quinone oxidoreductase lacking the energy coupling site.  相似文献   

8.
The competitive inhibition of fructokinase by glucose has been proposed as the mechanism by which Zymomonas mobilis preferentially consumes glucose from mixtures of glucose and fructose and accumulates fructose when growing on sucrose. In this study, incorporation of radioactive fructose into biomass was used as a measure of fructose catabolism. It was determined that the rate of fructose incorporation by Z. mobilis CP4 was somewhat lower in the presence of an equimolar concentration of glucose but that the inhibition of fructokinase by glucose was not nearly as severe in vivo as was predicted from in vitro studies. Interestingly, addition of glucose to a culture of Z. mobilis CP4-M2, a glucokinaseless mutant, resulted in an immediate and nearly complete inhibition of fructose incorporation. Furthermore, addition of nonmetabolizeable glucose analogs had a similar effect on fructose catabolism by the wild-type Z. mobilis CP4, and fructose uptake by Z. mobilis CP4-M2 was shown to be severely inhibited by equimolar amounts of glucose. These results suggest that competition for fructose transport plays an important role in preferential catabolism of glucose from sugar mixtures. Indeed, the apparent K(infm) values for sugar uptake by Z. mobilis CP4 were approximately 200 mM for fructose and 13 mM for glucose. Other experiments supported the conclusion that a single facilitated diffusion transport system, encoded by the glf gene, is solely responsible for the uptake of both glucose and fructose. The results are discussed with regard to the hypothesis that the kinetics of sugar transport and phosphorylation allow the preferential consumption of glucose and accumulation of fructose, making the fructose available for the enzyme glucose-fructose oxidoreductase, which forms sorbitol, an important osmoprotectant for Z. mobilis when growing in the presence of high sugar concentrations.  相似文献   

9.
The energetics of the anaerobic gram-negative bacterium Zymomonas mobilis, a well-known ethanol-producing organism, is based solely on synthesis of 1 mol of ATP per mol of glucose by the Entner-Doudoroff pathway. When grown in the presence of glucose as a carbon and energy source, Z. mobilis had a cytosolic ATP content of 3.5 to 4 mM. Because of effective pH homeostasis, the components of the proton motive force strongly depended on the external pH. At pH 5.5, i.e., around the optimal pH for growth, the proton motive force was about -135 mV and was composed of a pH gradient of 0.6 pH units (internal pH 6.1) and a membrane potential of about -100 mV. Measurement of these parameters was complicated since ionophores and lipophilic probes were ineffective in this organism. So far, only glucose transport by facilitated diffusion is well characterized for Z. mobilis. We investigated a constitutive secondary glutamate uptake system. Glutamate can be used as a nitrogen source for Z. mobilis. Transport of glutamate at pH 5.5 shows a relatively high Vmax of 40 mumol.min-1.g (dry mass) of cells-1 and a low affinity (Km = 1.05 mM). Glutamate is taken up by a symport with two H+ ions, leading to substantial accumulation in the cytosol at low pH values.  相似文献   

10.
Summary An Escherichia coli-Zymomonas mobilis shuttle vector was constructed from a 15.5 kb native plasmid of ZM6 00 and the E. coli plasmid, pBR329. Integrative transfer of this shuttle vector from E. coli to Z. mobilis was achieved with the aid of the mobilizing plasmid, pRK2013. The shuttle vector was stable in Z. mobilis for at least 300 generations without antibiotic selection.Offprint requests to: S. F. Delaney  相似文献   

11.
Production of Acetaldehyde by Zymomonas mobilis   总被引:2,自引:1,他引:1       下载免费PDF全文
Mutants of Zymomonas mobilis were selected for decreased alcohol dehydrogenase activity by using consecutively higher concentrations of allyl alcohol. A mutant selected by using 100 mM allyl alcohol produced acetaldehyde at a level of 4.08 g/liter when the organism was grown in aerated batch cultures on a medium containing 4.0% (wt/wt) glucose. On the basis of the amount of glucose utilized, this level of acetaldehyde production represents nearly 40% of the maximum theoretical yield. Acetaldehyde produced during growth was continuously air stripped from the reactor. Acetaldehyde present in the exhaust stream was then trapped as the acetaldehyde-bisulfite addition product in an aqueous solution of sodium bisulfite and released by treatment with base. Acetaldehyde was found to inhibit growth of Z. mobilis at concentrations as low as 0.05% (wt/wt) acetaldehyde. An acetaldehyde-tolerant mutant of Z. mobilis was isolated after both mutagenesis with nitrosoguanidine and selection in the presence of vapor-phase acetaldehyde. The production of acetaldehyde has potential advantages over that of ethanol: lower energy requirements for product separation, efficient separation of product from dilute feed streams, continuous separation of product from the reactor, and a higher marketplace value.  相似文献   

12.
The interaction of the membrane-bound glucose dehydrogenase from the anaerobic but aerotolerant bacterium Zymomonas mobilis with components of the electron transport chain has been studied. Cytoplasmic membranes showed reduction of oxygen to water with the substrates glucose or NADH. The effects of the respiratory chain inhibitors piericidin, capsaicin, rotenone, antimycin, myxothiazol, HQNO, and stigmatellin on the oxygen comsumption rates in the presence of NADH or glucose as substrates indicated that a complete and in the most parts identical respiratory chain is participating in the glucose as well as in the NADH oxidation. Furthermore, the presence of coenzyme Q10 (ubiquinone 10) in Z. mobilis was demonstrated. Extraction from and reincorporation of the quinone into the membranes revealed that ubiquinone is essential for the respiratory activity with glucose and NADH. In addition, a membrane-associated tetramethyl-p-phenylene-diamine-oxidase activity could be detected in Z. mobilis.Abbreviations ABTS 2,2-Azino-di-[3-ethyl-benzthiazolinesulfonate (6)] - GDH glucose dehydrogenase - HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - PQQ pyrroloquinoline quinone - TMPD N,N,N,N-tetramethyl-p-phenylene-diamine  相似文献   

13.
14.
A bacterium that stereospecifically produces l-valine from 5-isopropylhydantoin was isolated + from soil. It was identified as Bacillus brevis and given the number AJ-12299. l-Valine productivity from l-, d- or dl-5-isopropylhydantoin by B. brevis AJ-12299 was rather low because this bacterium had l-valine degrading-activity. In contrast, the productivity was improved by a mutant the l-valine degradation pathway of which was genetically blocked, and the 5-isopropylhydantoin consumed was stoichiometrically converted to l-valine. The optimal temperature and pH of the reaction were 30°C and 7.0~7.5. The enzyme involved in the reaction was inducible and was strongly induced by the addition of 5-isopropylhydantoin. In addition to l-valine production, this bacterium also produced various aliphatic and aromatic l-amino acids from the corresponding 5-substituted hydantoins.  相似文献   

15.
Summary Sorbitol is formed as the major by-product in ethanol fermentations by Zymomonas mobilis when both glucose and fructose are present in the fermentation medium. The amount of sorbitol produced was equivalent to as much as 11% of the original carbon source, decreasing the ethanol yield correspondingly. Only minor amounts of sorbitol were formed from glucose or fructose alone. The formation of sorbitol is apparently a consequence of the inhibition of fructokinase by glucose.  相似文献   

16.
A relatively simple and inexpensive anaerobic calorimeter was designed and evaluated by using a Hy-Cal Engineering BI-7 bidirectional heat-flux sensor to measure heat output from magnetically stirred I-L flask fermentations. The production of ethanol and cumulative heat output by Zymomonas mobilis were both linearly proportional to glucose concentrations up to 160 g/L.  相似文献   

17.
The properties of the d-glucose transport system of Zymomonas mobilis were determined by measuring the uptake of nonmetabolizable analogs (2-deoxy-d-glucose and d-xylose) by wild-type cells and the uptake of d-glucose itself by a mutant lacking glucokinase. d-Glucose was transported by a constitutive, stereospecific, carrier-mediated facilitated diffusion system, whereby its intracellular concentration quickly reached a plateau close to but not above the external concentration. d-Xylose was transported by the d-glucose system, as evidenced by inhibition of its uptake by d-glucose. d-Fructose was not an efficient competitive inhibitor of d-glucose uptake, indicating that it has a low affinity for the d-glucose transport system. The apparent K(m) of d-glucose transport was in the range of 5 to 15 mM, with a V(max) of 200 to 300 nmol min mg of protein. The K(m) of Z. mobilis glucokinase (0.25 to 0.4 mM) was 1 order of magnitude lower than the K(m) for d-glucose transport, although the V(max) values for transport and phosphorylation were similar. Thus, glucose transport cannot be expected to be rate limiting at concentrations of extracellular glucose normally used in fermentation processes, which greatly exceed the K(m) for the transport system. The low-affinity, high-velocity, nonconcentrative system for d-glucose transport described here is consistent with the natural occurrence of Z. mobilis in high-sugar environments and with the capacity of Z. mobilis for rapid conversion of glucose to metabolic products with low energetic yield.  相似文献   

18.
产乙醇运动发酵单胞菌的研究进展   总被引:10,自引:0,他引:10  
运动发酵单胞菌作为天然生产乙醇的主要微生物之一,具有特殊的Entner Doudoroff途径和其他一些特殊的糖代谢和能量代谢方式,因此具有乙醇产率高和乙醇耐受力强的显著特点。通过简述运动发酵单胞菌的糖代谢和能量代谢、乙醇和高渗透压等耐性及其遗传改造三方面的研究进展,阐明其应用于燃料乙醇生产的巨大潜力  相似文献   

19.
M. A. Typas  I. Galani 《Genetica》1992,87(1):37-45
Mutagenesis of the facultative anaerobe Zymomonas mobilis was accomplished by three different mutagens. Ultra-violet (UV) irradiation, whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, was a poor mutagen for this organism. Ethyl methane sulphonate (EMS) gave results very similar to UV-irradiation. N-methyl-N-nitro-N-nitrosoguanidine (MNNG), which is believed to act by multiple mutagenic mechanisms, was the most powerful mutagen, always resulting in a large number of mutants of all types examined (i.e. auxotrophs, antibiotic resistant, heavy metal resistant and ultraviolet sensitive). Reversion frequencies of MNNG-induced mutants were very low. Evidence is provided that mutagenesis of Z. mobilis is affected by photoreactivation, adaptive response and error-prone repair mechanisms. Moreover, cells treated with alkylating agents and allowed to recover under anaerobic conditions clearly demonstrated that anaerobiosis plays a significant role in repair, but not in the induction of mutants.  相似文献   

20.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号