首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Identification of mouse palmitoyl-coenzyme A Delta9-desaturase   总被引:5,自引:0,他引:5  
Stearoyl-coenzyme A desaturase (SCD) catalyzes the desaturation of saturated fatty acids to monounsaturated fatty acids in mammalian cells. Currently, there are four known enzymatic isoforms (SCD1-SCD4) in the mouse genome. The physiological roles for multiple SCD isoforms and their substrate specificities are unknown at present. We report here distinct substrate specificities for the mouse SCD isoforms. Each SCD isoform was able to complement the ole1 mutation in Saccharomyces cerevisiae through heterologous expression of transgenic SCD. Fatty acid analysis showed that mouse SCD1, SCD2, and SCD4 desaturate both C18:0 and C16:0, whereas mouse SCD3 uses C16:0 but not C18:0. We identify SCD3 as a mammalian palmitotyl-CoA Delta9-desaturase, and its existence in mouse helps explain distinct physiological roles for each SCD isoform.  相似文献   

2.
3.
Stearoyl-CoA desaturase (SCD), a central enzyme in lipid metabolism that synthesizes monounsaturated fatty acids, has been linked to tissue metabolism and body adiposity regulation. Recent studies showed that SCD has the ability to reprogram cardiac metabolism, thereby regulating heart function. In the heart, the lack of SCD1 enhances glucose transport and metabolism at the expense of fatty acid (FA) uptake and oxidation. The metabolic changes associated with SCD1 deficiency protect cardiac myocytes against both necrotic and apoptotic cell death and improve heart function. Furthermore, SCD4, a heart-specific isoform of SCD, is specifically repressed by leptin and the lack of SCD1 function in leptin-deficient ob/ob mice results in a decrease in the accumulation of neutral lipids and ceramide and improves the systolic and diastolic function of a failing heart. Large-population human studies showed that the plasma SCD desaturation index is positively associated with heart rate, and cardiometabolic risk factors are modulated by genetic variations in SCD1. The current findings indicate that SCD may be used to reprogram myocardial metabolism to improve cardiac function. Here, we review recent advances in understanding the role of SCD in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathies.  相似文献   

4.
The mouse preputial gland (PG), a specialized sebaceous structure, is rich in wax esters, triglycerides, and alkyl-2,3-diacylglycerol. We have found that the mouse PG expresses the three gene isoforms (SCD1, SCD2, and SCD3) of the Delta9 stearoyl-CoA desaturase enzyme that catalyzes the biosynthesis of monounsaturated fatty acids mainly, C16:1n-7 and C18:1n-9. However, mice with a targeted disruption in the SCD1 isoform (SCD1(-/-)) have undetectable SCD3 mRNA expression in the PG while the expression of SCD2 isoform was not altered. The levels of C16:1n-7 were reduced by greater than 70% while that of C18:1n-9 were reduced by 28%. The content of the C16:1n-10 (Delta6 hexadecenoic acid) isomer and a major fatty acid of the PG was increased by greater than 2-fold, mainly in the wax ester fraction of the SCD1(-/-) mouse. We demonstrate that the increase in C16:1n-10 is due to induction of a specific palmitoyl-CoA Delta6 desaturase activity. Testosterone administration to the SCD1(-/-) mouse induced SCD3 mRNA expression and resulted in an increase in the Delta9 desaturation of 16:0-CoA, but not of 18:0-CoA. These observations demonstrate that loss of SCD1 function alters the expression of SCD3 and reveal for the first time the presence and regulation of a palmitoyl-CoA Delta6 desaturase enzyme in mammals.  相似文献   

5.
Regulation of stearoyl-CoA desaturases and role in metabolism   总被引:17,自引:0,他引:17  
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly oleate (18:1) and palmitoleate (16:1). These represent the major monounsaturated fatty acids of membrane phospholipids, triglycerides, wax esters and cholesterol esters. The ratio of saturated to monounsaturated fatty acids affects phospholipid composition and alteration in this ratio has been implicated in a variety of disease states including cardiovascular disease, obesity, diabetes, neurological disease, and cancer. For this reason, the expression of SCD is of physiological significance in both normal and disease states. Several SCD gene isoforms (SCD1, SCD2, SCD3) exist in the mouse and one SCD isoform that is highly homologous to the mouse SCD1 is well characterized in human. The physiological role of each SCD isoform and the reason for having three or more SCD gene isoforms in the rodent genome are currently unknown but could be related the substrate specificities of the isomers and their regulation through tissue-specific expression. The recent studies of asebia mouse strains that have a natural mutation in the SCD1 gene and a mouse model with a targeted disruption of the SCD1 gene have provided clues concerning the role that SCD1 and its endogenous products play in the regulation of metabolism.  相似文献   

6.
7.
Recent insights into stearoyl-CoA desaturase-1   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Stearoyl-Coenzyme A (CoA) desaturase is a central lipogenic enzyme catalyzing the synthesis of monounsaturated fatty acids - mainly oleate (C(18:1)). Oleate is the most abundant monounsaturated fatty acid in dietary fat and is therefore readily available. Why, then, is stearoyl-CoA desaturase a highly regulated enzyme? This review summarizes the recent and timely advances concerning the important role of stearoyl-CoA desaturase in metabolism. RECENT FINDINGS: Recent findings using mice that have a naturally occurring mutation in the SCD1 gene isoform as well as a mouse model with a targeted disruption of the stearoyl-CoA desaturase gene-1 (SCD1-/-) have revealed the role of de-novo synthesized oleate and thus the physiological importance of SCD1 expression. In the highlighted references, it is shown that the SCD1-/- mice have reduced body adiposity, increased insulin sensitivity, and are resistant to diet-induced obesity. The expression of several genes of lipid oxidation is upregulated, whereas lipid synthesis genes are downregulated. SCD1 was also found to be a component of the novel metabolic response to the hormone leptin. SUMMARY: SCD1, therefore, appears to be an important metabolic control point, and inhibition of its expression could be of benefit for the treatment of obesity, diabetes and other metabolic diseases.  相似文献   

8.
9.
[Purpose]Deleted in breast cancer 1 (DBC1) ablation causes obesity, and stearoyl-CoA desaturase 1 (SCD1) induces the biosynthesis of monounsaturated fatty acids. This study examined whether voluntary wheel running (VWR) alters SCD-1 and DBC1 protein levels in the liver of leptin-deficient ob/ob mice.[Methods]Twenty-five Ob/Ob mice were divided into two groups (ob/ob-Sed and ob/ob-Ex). The expression of DBC1 and SCD1 in the mouse liver was determined using western blotting.[Results]After 10 weeks, VWR significantly reduced body weight without affecting the fatty acid synthase and CD36 protein levels. The average daily running distance was 4.0±1.0 km/day. This improvement was associated with changes in the hepatic SCD1 and DBC1 levels. Hepatic SCD-1 protein levels increased significantly, and DBC1 protein levels decreased in ob/ob-Sed animals. On the other hand, VWR inhibited the obesity-induced increase in SCD1 expression and impaired the obesity-induced decrease in DBC1 expression in the liver of leptin-deficient ob/ob mice.[Conclusion]This is the first study showing that VWR has strong effects on hepatic SCD1 and DBC1 in ob/ob mice, and provides key insights into the effects of exercise on obesity.  相似文献   

10.
11.
12.
Stearoyl-CoA desaturase (SCD) is a microsomal enzyme required for the biosynthesis of oleate and palmitoleate, which are the major monounsaturated fatty acids of membrane phospholipids, triglycerides, and cholesterol esters. Two well characterized isoforms of SCD, SCD1 and SCD2, exist in the mouse. Most mouse tissues express SCD1 and 2 with the exception of the liver, which expresses mainly the SCD1 isoform. We found that asebia mice homozygous for a natural mutation of the gene for SCD1 (SCD-/-) are deficient in hepatic cholesterol esters and triglycerides despite the presence of normal activities of acyl-CoA:cholesterol acyltransferase and glycerol phosphate acyltransferase, the enzymes responsible for cholesterol ester and triglyceride synthesis, respectively, in the liver of these mice. Feeding diets supplemented with triolein or tripalmitolein to the SCD-/- mice resulted in an increase in the levels of 16:1 and 18:1 in the liver but failed to restore the 18:1 and 16:1 levels of the cholesterol ester and triglycerides to the levels found in normal mice. The SCD-/- mouse had very low levels of triglycerides in the VLDL and LDL lipoprotein fractions compared with the normal animal. Transient transfection of an SCD1 expression vector into Chinese hamster ovary cells resulted in increased SCD activity and esterification of cholesterol to cholesterol esters. Taken together, our observations demonstrate that the oleoyl-CoA and palmitoleyl-CoA produced by SCD1 are necessary to synthesize enough cholesterol esters and triglycerides in the liver and suggest that regulation of SCD1 activity plays an important role in mechanisms of cellular cholesterol homeostasis.  相似文献   

13.
14.
15.
Stearoyl-CoA desaturase (SCD) is an integral membrane protein of the endoplasmic reticulum (ER) that catalyzes the formation of monounsaturated fatty acids from saturated fatty acids. Recent studies suggest that SCD is a key regulator of energy metabolism and has implications in dislipidemia and obesity. Four SCD isoforms (SCD1-4) have been identified in mouse. In human, only one SCD isoform has been characterized so far. Here we report that the previously reported human ACOD4 gene encodes a distinct stearoyl-CoA desaturase, hSCD5. GenBank database mining revealed orthologues of hSCD5 in the primates, but not in the rodents. In transiently transfected 293 cells, hSCD5 co-localized with calnexin on ER membrane. Microsome fractions prepared from hSCD1 and hSCD5 transfected cells displayed similar delta 9 desaturase activity. Quantitative real-time RT-PCR analysis suggested that hSCD5 was abundantly expressed in adult brain and pancreas. These data suggested that hSCD5 plays a role distinct from that of hSCD1 during development and in normal physiological conditions.  相似文献   

16.
17.
The present study investigated whether oxidative stress plays a role in ischemia-reperfusion-induced changes in cardiac gene expression of Na(+)-K(+) ATPase isoforms. The levels of mRNA for Na(+)-K(+) ATPase isoforms were assessed in the isolated rat heart subjected to global ischemia (30 min) followed by reperfusion (60 min) in the presence or absence of superoxide dismutase (5 x 10(4)U/L) plus catalase (7.5 x 10(4)U/L), an antioxidant mixture. The levels of mRNA for the alpha(2), alpha(3), and beta(1) isoforms of Na(+)-K(+) ATPase were significantly reduced in the ischemia-reperfusion hearts, unlike the alpha(1) isoform. Pretreatment with superoxide dismutase+catalase preserved the ischemia-reperfusion-induced changes in alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, whereas the alpha(1) mRNA levels were unaffected. In order to test if oxidative stress produced effects similar to those seen with ischemia-reperfusion, hearts were perfused with an oxidant, H(2)O(2) (300 microM), or a free radical generator, xanthine (2mM) plus xanthine oxidase (0.03 U/ml) for 20 min. Perfusion of hearts with H(2)O(2) or xanthine/xanthine oxidase depressed the alpha(2), alpha(3), and beta(1) isoform mRNA levels of the Na(+)-K(+) ATPase, but had lesser effects on alpha(1) mRNA levels. These results indicate that Na(+)-K(+) ATPase isoform gene expression is altered differentially in the ischemia-reperfusion hearts and that antioxidant treatment appears to attenuate these changes. It is suggested that alterations in Na(+)-K(+) ATPase isoform gene expression by ischemia-reperfusion may be mediated by oxidative stress.  相似文献   

18.
To investigate whether dietary fatty acid (FA) composition and energy restriction (ER) interactively influence obese (ob) gene expression, rats consumed diets containing beef tallow, safflower, or fish oil ad libitum (AL) or at 60% AL intake. Circulating leptin concentrations were higher (P < 0.0001) after AL feeding, but were not influenced by dietary fat. ER decreased (P < 0.0001) weight gain and visceral adipose weight, which were positively correlated (r = 0.40 P < 0.001, r = 0.58 P < 0.0001) with circulating leptin levels. Visceral adipose ob mRNA levels were greater in animals fed unsaturated fats, particularly safflower oil, which had the highest ob mRNA levels. Circulating leptin levels did not parallel ob mRNA levels, except for the greater abundance detected in AL adipose in comparison to ER animals. In addition, visceral FA profiles reflected dietary fat source and were influenced by an interaction of dietary fat and energy. These data demonstrate that dietary fat, particularly from a plant or marine source, and ER interactively influence ob mRNA levels; however, alterations in ob mRNA do not confer changes in circulating leptin, with the exception of ER, which is a key determinant. Thus, dietary intake is an important regulator of leptin production; however, the significance of these modest changes in diet-induced obese animals requires further study.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号