首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Historically management of human use of ecosystems has been based around engineering and chemical approaches and through the construction of treatment facilities, effluent controls and setting chemical concentrations, both at end of pipe and in the aquatic environment. However, the general continued degradation of many ecosystems shows these approaches alone are insufficient. In the Laurentian Great Lakes the Great Lakes Water Quality Agreement was first signed in 1972 and ratified in 1978 and in 1987 tacitly acknowledged the problems with a chemical only approach by requiring the development of ecosystem objectives in the 1978 agreement. Furthermore, the agreement specifically identified numerical ecosystem objectives in the 1987 agreement. The evolution of ecosystem objectives in the Great Lakes has expanded from the strictly numerical objectives such as production of lake trout and abundance of the amphipod Pontoporeia hoyi. More recent developments in ecosystem objectives have been the inclusion of indicators for wildlife, habitat, human health and stewardship.Prepared as a discussion paper presented to the United Nations Economic Commission for Europe's seminar on an Ecosystems Approach to Water Management (May 27–31, 1991).  相似文献   

2.
The concepts of ecosystem and integrity effectively entered the binational political arena in the Great Lakes Basin in the early 1970's. They were brought together explicitly in the statement of the purpose of the 1978 Great Lakes Water Quality Agreement. The 1987 Protocol to that Agreement has helped to specify the practical meaning of ecosystem integrity of the Great Lakes Basin. The proceedings of a binational workshop in 1988, titled An Ecosystem Approach to the Integrity of the Great Lakes Basin in Turbulent Times, helped to clarify the conceptual meaning. An Ecosystem Charter for the Great Lakes-St. Lawrence River Basin was proposed in 1989 to help achieve more thorough implementation of the commitment to ecosystem integrity. The evolutionary emergence of this political concept and related practice is described in the paper.List of abbreviations used in the text CUSIS Canada-U.S. Inter-University Seminar Series - LAA Environmental Lakes Area - EPA Environmental Protection Agency - GLBC Great Lakes Basin Commission - GLC Great Lakes Commission - GLER Great Lakes Ecosystem Rehabilitation - GLFC Great Lakes Fishery Commission - GLSAB Great Lakes Science Advisory Board - GLU Great Lakes United - GLWQA Great Lakes Water Quality Agreement - HASP Heritage Area Security Plan - IBP International Biological Program - IJC International Joint Commission - IZAP Inundation Zone Adaptive Plan - LAMP Lake-wide Management Plan - LLRS Lake Levels Reference Study - MAB Man and the Biosphere program - NEPA National Environmental Policy Act - PLUARG Pollution from Land Use Activities Reference Group - RAP Remedial Action Plan - SCOL Salmonid Communities in Oligotrophic Lakes - SGLFMP Strategic Great Lakes Fishery Management Plan - SPOF Strategic Plan for Ontario Fisheries - UNESCO United Nations Educational, Scientific and Cultural Organization Aquatic Ecosystem Health and Management Society. Symposium at the University of Waterloo, July 23–25, 1990.  相似文献   

3.
A bioenergy production and delivery system built around the Great Lakes St. Lawrence Seaway (GLSLS) transportation corridor was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of the GLSLS and associated railway lines was estimated to be capable of producing at least 30 Mt(dry) yr−1 of lignocellulosic biomass with minimal adverse impacts on food and fibre production. This was estimated to be sufficient to displace all of the coal-fired electricity in Ontario plus more than 620 million L of green diesel (equivalent to 5.3% of diesel consumption in GLSLS provinces). Lifecycle greenhouse gas emissions were 88% and 76% lower than coal-fired power and conventional diesel, respectively. Production costs of $120 MWh−1 for power and up to $30 GJ−1 ($1.1 L−1) for green diesel were higher than current market prices, but a value for low-carbon energy would narrow the price differential.  相似文献   

4.
Biogenic silica concentration (BSi) in sediment cores from the Great Lakes is evaluated as an estimate of siliceous microfossil abundance. A significant linear relationship was found between measured BSi and diatom valve abundance for sediment cores from the Bay of Quinte, Lake Ontario, Lake Erie, Lake Michigan and Lake Superior and between measured BSi and diatom biovolume for Lake Erie, Lake Michigan, and Lake Superior but not for Lake Ontario. Diatom silica predicted from diatom species abundance and an estimated silica content per cell in the Lake Erie cores accounted for 117% and 103% of measured BSi, respectively. By contrast, predicted diatom silica could only account for 28% of measured BSi in the Lake Michigan core and only 25% in the Lake Superior core. A few large diatoms with a large silica content per cell comprised a major portion of predicted diatom silica in all cores. The discrepancy between chemically measured BSi and the silica predicted from diatoms in the Lake Michigan and Lake Superior cores was partially due to the inability of the regression model, used to estimate diatom silica content, to account for different degrees of silicification in the diatom asemblages from the more dissolved silica rich Lake Michigan and Lake Superior.  相似文献   

5.
Robbins  J. A. 《Hydrobiologia》1982,91(1):611-622
Recent sediments of the North American Great Lakes are inhabited by numerous species of macrobenthos which alter the physical and chemical properties of sediments and modify interface transport characteristics. Distributions of such radionuclides as cesium-137, lead-210, and isotopes of plutonium exhibit a zone of constant activity extending down from the sediment-water interface from 1 to 15 cm. Recent studies have confirmed that radiometrically determined mixed depths are consistent with the vertical distribution of oligochaete worms and the amphipod,Pontoporeia hoyi. Generally, 90% of the benthos are contained within the radiometrically defined mixed zone. Where comparisons are possible, rates of sediment reworking by ‘conveyor belt’ species are comparable to or exceed sedimentation rates. Systematic variations in the mixed depth occur within depositional basins with greatest depths tending to be associated with least consolidated, organically rich materials. A quantitative steady-state mixing model accounts satisfactorily for observed radioactivity and heavy metal profiles. Bioturbation appears to be an important process, limiting the resolution with which historical records of particle-associated contaminants may be reconstructed from sediment cores. As bioturbation serves to maintain contact of contaminated sediments with overlying water, this time may also characterize the long-term lake recovery for contaminants removed by burial. As the time varies with location, a mean for an entire lake is not well known, but is on the order of 20 years for Lake Huron. Contribution No. 300 of the Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan.  相似文献   

6.
1. The Laurentian Great Lakes are among the most invaded freshwater ecosystems in the world. Historically, the major vector for the introduction of non‐indigenous species (NIS) has been the release of contaminated ballast water via transoceanic ships. Despite regulations implemented in 1993, requiring vessels carrying fresh ballast water to exchange this water with saline ocean water, new reports of invasions have continued. 2. NIS often have a wide environmental tolerance allowing them to adapt to and invade a variety of habitats. It has been hypothesized that NIS with broad salinity tolerance may be able to survive ballast water exchange (BWE) and continue to pose an invasion risk to the Great Lakes. 3. We tested the short‐term salinity tolerance of eight recent invaders to the Great Lakes, specifically three cladocera (Bosmina coregoni, Bythotrephes longimanus, Cercopagis pengoi), two molluscs (Dreissena polymorpha, Dreissena rostriformis bugensis), and one species each of the families Gammaridae, Mysidae and Gobidae (Echinogammarus ischnus, Hemimysis anomala, Neogobius melanostomus) to determine if they could have survived salinities associated with BWE. 4. Overall, short‐term exposure to highly saline water dramatically reduced survival of all species. Two different methods of BWE tested, simultaneous and sequential, were equally effective in reducing survival. Species that survived the longest in highly saline water either possess behavioural characteristics that reduce exposure to adverse environments (valve closure; both Dreissena species) or are reported to have some degree of salinity tolerance in their native region (Echinogammarus). Given that exposure in our trials lasted a maximum of 48 h, and that species in ballast tanks would typically be exposed to saline water for c. 5 days, it appears that BWE is an effective method to reduce the survival of these NIS. These results provide impetus for tightening policy and monitoring of BWE, in particular for ships entering the Great Lakes from freshwater ports.  相似文献   

7.
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in atmospheric N deposition along the gradient from Lake Superior to Lake Ontario, but few differences between lakes in sediment carbon (C), nitrogen (N) or phosphorus (P). Wetland water and sediment chemistry were correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 3. The N : P ratio of wetland waters and sediments indicated that these coastal wetlands were N‐limited. Nutrient stoichiometry was correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 4. Extracellular enzyme activity was correlated with wetland sediment and water chemistry and stoichiometry, atmospheric N deposition, the agricultural stress gradient and the hydrological turnover time. The ratios of glycosidases to peptidases and phosphatases yielded estimates of nutrient limitation that agreed with those based solely on nutrient chemistry. 5. This study, the first to link microbial enzyme activities to regional‐scale anthropogenic stressors, suggests that quantities and ratios of microbial enzymes are directly related to the concentrations and ratios of limiting nutrients, and may be sensitive indicators of nutrient dynamics in wetland ecosystems, but further work is needed to elucidate these relationships.  相似文献   

8.
Exotic species typically lose most of their associated parasites during long-distance spread. However, the few parasites that are co-introduced may have considerable adverse impacts on their novel hosts, including mass mortalities. We present a comprehensive inventory of parasites known to infect 38 species of exotic invertebrates established in the Great Lakes, as well as 16 invertebrate species predicted to arrive in the near future, all of them crustaceans. Based on a literature analysis, we identified a total of 277 parasite taxa associated with the examined invertebrates in their native ranges and/or invaded areas. Of these parasites, 56 species have been documented to cause various pathologies in their intermediate or final hosts, with humans and fishes being the most frequently affected host categories. Potentially harmful parasites were identified in 61% of the invaders for which published information was retrieved (in their ranges outside of the Great Lakes), with molluscs and crustaceans hosting the highest numbers of such parasites. The results of our study provide a baseline for further assessment and management of the parasitological risks posed by exotic species to the Great Lakes.  相似文献   

9.
Pisidium moitessierianum Paladilhe, 1866, a small pea clam native to Europe, was identified for the first time from the lower Great Lakes basin based on an examination of historical collections of Pisidium performed by V. Sterki in 1894 and 1903 and new material collected during 1997 and 1998. During recent surveys, P. moitessierianum individuals were found in the St. Clair River delta, Lake St. Clair and western Lake Erie, but were not detected in the Detroit River or western Lake Ontario. Pisidium moitessierianum was collected on sand, silty sand and mud substrata from water depths ranging between 0.6 and 5.4 m. Populations occurred at an average density of 51 ind. m–2 and included juveniles and adults. All individuals were less than 2.0 mm in length. We examined the structure of the umbos and hinge, surface sculpture and shape of the shell, and the anatomy of gills, mantle and nephridia in populations from the lower Great Lakes and Ukrainian inland basins (Dnieper River and Lake Beloye). The results indicated that the Great Lakes' pea clams match European specimens of P. moitessierianum in these conchological and anatomical characteristics. As with other nonindigenous sphaeriids in the Great Lakes, P. moitessierianum was likely introduced through shipping activities into the Great Lakes, possibly as early as the 1890s.  相似文献   

10.
A sediment quality index (SQI) based on the Canadian Water Quality Index was developed and applied to the assessment of sediment quality in two Great Lakes Areas Of Concern where metals are the primary contaminants of potential concern, Peninsula Harbour (Lake Superior) and Collingwood Harbour (Lake Huron). The SQI was calculated according to an equation incorporating two elements; scope—the number of variables that do not meet guideline objectives; and, amplitude—the magnitude by which variables exceed guideline objectives. Categorizations of sediment quality were developed based on SQI scores. The robustness of the SQI was evaluated through comparison of the relative rankings of sediment quality in the two test areas with results obtained from principle components analysis (PCA) incorporating reference sites, and calculations of hazard quotients (HQs). Trends and rankings in sediment quality determined by the SQI were similar to those calculated using PCA at both test areas. The HQs also appeared to be good indicators of sediment quality. Both the SQI and HQ methods are based on existing Sediment Quality Guidelines, but the SQI had the added benefit of allowing straightforward integration of multiple contaminants. The SQI and PCA analyses appeared complementary in that the SQI incorporated information on the number of variables exceeding guideline values and the degree to which these guidelines were exceeded. The PCA allowed a simple check of the SQI by relating test conditions to regional background. It is recommended that this analysis be performed concurrently with SQI to ensure that non-anthropogenic sources of contaminants (metals in this case) are not considered as representing an anthropogenic hazard.  相似文献   

11.
Filtration of ballast water was investigated as a means of minimizing the introduction of nonindigenous zooplankton and phytoplankton by ships visiting the North American Great Lakes-St. Lawrence Seaway system (GLSLSS). An automatic backwash screen filtration (ABSF) system with nominal filtration options of 25, 50 or 100 μm was mounted on the deck of an operating Seaway-sized dry bulk carrier, the MV Algonorth. Water was pumped through the ABSF with a deck mounted pump at 341 m3 hr−1 during routine ship operations in the GLSLSS, and effectiveness of the various screen pore sizes at removing taxonomic categories of zooplankton and phytoplankton was measured using matched treatment and control ballast tanks. The smallest pore sizes (25 and 50 μm) performed better than the 100 μm pore size at removing biological material. There was no difference in the filtration efficiency of the 25 and 50 μm screens relative to macro- or microzooplankton in these tests, but this result was probably due to low densities of macrozooplankton, and soft-bodied (aloricate) characteristics of the microzooplankton present. The 25 and 50 μm pore sizes were subjected to more controlled tests on board a stationary barge platform equipped with triplicate 700 L catchment bins moored in Duluth Harbor of Lake Superior. In these tests, filter pore size, organism size and rigidity influenced zooplankton removal efficiency by the ABSF. The 25 μm screen reduced both macrozooplankton and microzooplankton significantly more than the 50 μm screen. Zooplankton width was more determinative of filtration performance than length, and both filters removed loricate species of rotifers significantly more efficiently than aloricate species of the same length and width size classes. The 25 and 50 μm ABSF also significantly reduced algal densities, with the exception of colonial and filamentous green algae (50 μm only). Filter efficiency relative to algal particles was influenced by filter pore size, organism morphology and structure, and intake density, while algal particle size was not determinative. This research provides compelling evidence that 25 or 50 μm filtration is a potentially powerful means of reducing densities of organisms discharged by ships operating in the Great Lakes but an additional treatment step would be necessary to effectively minimize risk and meet the International Maritime Organization's discharge standards associated with organisms of all sizes in the water column.  相似文献   

12.
The Laurentian Great Lakes basin has been invaded by at least 182 non-indigenous species. A new invader is discovered every 28 weeks, which is the highest rate recorded for a freshwater ecosystem. Over the past century, invasions have occurred in phases linked to changes in the dominant vectors. The number of ship-vectored invaders recorded per decade is correlated with the intensity of vessel traffic within the basin. Ballast water release from ocean vessels is the putative vector for 65% of all invasions recorded since the opening of the St. Lawrence Seaway in 1959. As a preventive measure, ocean vessels have been required since 1993 to exchange their freshwater or estuarine ballast with highly saline ocean water prior to entering the Great Lakes. However, this procedure has not prevented ship-vectored species introductions. Most ships visiting the Great Lakes declare 'no ballast on board' (NOBOB) and are exempt from the regulation, even though they carry residual water that is discharged into the Great Lakes during their activities of off-loading inbound cargo and loading outbound cargo. Recently introduced species consist predominantly of benthic invertebrates with broad salinity tolerance. Such species are most likely to survive in a ballast tank following ballast water exchange, as well as transport in the residual water and tank sediments of NOBOB ships. Thus, the Great Lakes remain at risk of being invaded by dozens of euryhaline invertebrates that have spread into Eurasian ports from whence originates the bulk of foreign ships visiting the basin.  相似文献   

13.
Although dietary concerns of Laurentian Great Lakes (GL) fish focus on the risk from persistent bioaccumulative toxicant (PBT) contaminants, fish are also an important source of nutrients beneficial to human health such as polyunsaturated fatty acids (e.g., eicosapentanoic acid and docosahexanoic acid). This study presents PBT trend data from the GL tribal fisheries over the past 20 years. PBT contaminants (282 analytes) from fillet portions of lake trout and whitefish were analyzed for trending patterns from 1992 to 2011 and are reported on five of the ATSDR/USEPA Great Lakes biomonitoring legacy contaminants (Hg, ΣDDE, ΣDDT, HCB, mirex, and ΣPCBs), two of the optional biomonitoring PBTs (toxaphene and Σdioxins/furans) and PCB 153 as a specific congener marker. Similar to other recent reports our data indicate that most PBT contaminant concentrations in the GL biota have decreased, which may indicate progress in reducing environmental emissions. Our research confirms that all contaminants demonstrate significant declines except Hg and toxaphene. Both of those remained constant after correcting for known independent factors of age, lipid, and size. These results are potentially encouraging and may provide useful data for the long distance and perhaps global influences of PBTs on the safety of fish consumption.  相似文献   

14.
We examined how geographic distribution of birds and their affinities to three geomorphic wetland types would affect the scale at which we developed indicators based on breeding bird communities for Great Lakes coastal wetlands. We completed 385 breeding bird surveys on 222 wetlands in the US portion of the basin in 2002 and 2003. Analyses showed that wetlands within two ecoprovinces (Laurentian Mixed Forest and Eastern Broadleaf Forest) had different bird communities. Bird communities were also significantly different among five lakes (Superior, Michigan, Huron, Erie, and Ontario) and among three wetland types (lacustrine, riverine, barrier-protected). Indicator values illustrated bird species with high affinities for each group (ecoprovince, lake, wetland type). Species with restricted geographic ranges, such as Alder and Willow Flycatchers (Empidonax alnorum and E. traillii), had significant affinities for ecoprovince. Ten bird species had significant affinities for lacustrine wetlands. Analyses on avian guild metrics showed that Lake Ontario wetlands had fewer long-distant migrants and warblers than other lakes. Numbers of short-distant migrants and total individuals in wetlands were higher in the Eastern Broadleaf Forest ecoprovince. Number of flycatchers and wetland obligate birds were not different among provinces, lakes, or wetland type. One potential indicator for wetland condition in Great Lakes wetlands, proportion of obligate wetland birds, responded negatively to proportion of developed land within 1 km of the wetland. We conclude that, although a guild approach to indicator development ameliorates species-specific geographic differences in distribution, individual species responses to disturbance scale will need to be considered in future indicator development with this approach.  相似文献   

15.
In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.  相似文献   

16.
Unexpected habitat innovations among invading species are illustrated by the expansion of dreissenid mussels across sedimentary environments in shallow water unlike the hard substrates where they are conventionally known. In this note, records of population characteristics of invading zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels from 1994 through 1998 are reported from shallow (less than 20m) sedimentary habitats in western Lake Erie. Haphazard SCUBA collections of these invading species indicated that combined densities of zebra and quagga mussels ranged from 0 to 32,500 individuals per square meter between 1994 and 1998, with D. polymorpha comprising 75–100% of the assemblages. These mixed mussel populations, which were attached by byssal threads to each other and underlying sand-grain sediments, had size–frequency distributions that were typical of colonizing populations on hard substrates. Moreover, the presence of two mussel cohorts within the 1994 samples indicated that these species began expanding onto soft substrates not later than 1992, within 4 years of their initial invasion in western Lake Erie. Such historical data provide baselines for interpreting adaptive innovations, ecological interactions and habitat shifts among the two invading dreissenid mussel species in North America.  相似文献   

17.
One of the major challenges facing fishery scientists and managers today is determining how fish populations are influenced by habitat conditions. Many approaches have been explored to address this challenge, all of which involve modeling at one level or another. In this paper, we explore a process-oriented model approach whereby the critical population processes of birth and death rates are explicitly linked to habitat conditions. Application of this approach to five species of Great Lakes fishes including: walleye (Sander vitreus), lake trout (Salvelinus namaycush), smallmouth bass (Micropterus dolomieu), yellow perch (Perca flavescens), and rainbow trout (Onchorynchus mykiss), yielded a number of insights into the modeling process. One of the foremost insights is that processes determining movement and transport of fish are critical components of such models since these processes largely determine the habitats fish occupy. Because of the importance of fish location, an individual-based model appears to be a nearly inescapable modeling requirement. There is, however, a paucity of field-based data directly relating birth, death, and movement rates to habitat conditions experienced by individual fish. There is also a paucity of habitat information at a fine temporal and spatial scale for many important habitat variables. Finally, the general occurrence of strong ontogenetic changes in the response of different life stages to habitat conditions emphasizes the need for a modeling approach that considers all life stages in an integrated fashion.  相似文献   

18.
Under the Great Lakes Water Quality Agreement of 1978 between the United States and Canada, as amended in 1987, an ecosystem objective with associated indicators for Lake Superior was adopted, and a commitment was made to develop ecosystem objectives and indicators for each of the other Great Lakes. Building upon a history of activities within the International Joint Commission related to the development of ecosystem indicators for Lake Superior and for mesotrophic waters, a binational Ecosystem Objectives Work Group (EOWG) has been established by the U.S. and Canada and charged with developing ecosystem objectives for the Great Lakes, beginning with Lake Ontario. These objectives are primarily biological in nature, in contrast to chemical objectives. The approach of the EOWG is to identify in sequence: (1) broad ecosystem goals, (2) a suite of objectives whose attainment would ensure achievement of the goals, and (3) one or more measurable indicators of progress toward meeting each objective. Societal values are reflected in the goals and objectives following consultation with competing users of ecosystem resources. Identification of appropriate indicators requires the assistance of technical experts. The experience of the EOWG in developing ecosystem objectives for Lake Ontario illustrates the application of this process.  相似文献   

19.
Ewins  P. J.  Weseloh  D. V.  Groom  J. H.  Dobos  R. Z.  Mineau  P. 《Hydrobiologia》1994,(1):39-55
In the Great Lakes, the Herring Gull (Larus argentatus) is a prominent member of the aquatic bird community, and has been used to monitor spatial and temporal trends in contaminant levels. To understand more fully contaminant loading outside the breeding season, we analysed the contents of 1298 freshly regurgitated pellets and 179 fresh faeces, collected in March and early April 1978–83, and between late December and late February 1990–91, from the vicinity of breeding colonies in Lakes Ontario and Erie, the Niagara River, Detroit River, and south-eastern parts of Lake Huron. Most adult Herring Gulls from the Great Lakes population winter in these areas, but there is no published account of their food habits other than during the breeding season. Most pellets from colonies close to large urban centres contained remains of garbage, as well as various fish species. Small mammals, notably Deer Mice (Peromyscus maniculatus) dominated the early spring diet at Lake Huron colonies near agricultural areas. At all other sites fish predominated in pellets and faeces, but garbage items were also recorded regularly. The species of fish consumed varied regionally, probably reflecting local availability. In Lake Ontario, Rainbow Smelt (Osmerus mordax) and Alewife (Alosa pseudoharengus) occurred most frequently in samples, whereas Freshwater Drum (Aplodinotus grunniens) was the main fish prey in Lake Erie and the Detroit River. Dietary differences were apparent between years, within seasons, and amongst areas. While these may have reflected some real differences in food availability, interpretation of these results was confounded by various biases inherent in the sampling of pellets and faeces to determine diet in such an opportunistic species. Therefore, it would be unwise to draw rigid conclusions as to regional or seasonal differences in the diets of piscivorous birds, based upon analyses of diet from only a small sample of sites or years. Herring Gulls appear to feed mainly on fish and garbage in winter and early spring on the lower Great Lakes (much as during the breeding season), but any locally abundant food source is probably exploited opportunistically.  相似文献   

20.
Abstract: During the past 30 years, nonnative mute swan (Cygnus olor) populations have greatly increased, and continue to increase, in the eastern United States and within the lower Great Lakes (LGL) region. As a result, there is much concern regarding impacts of mute swan on native waterfowl, aquatic plants, and marsh habitats. There are presently only limited dietary data for mute swans in North America and none exist for birds in the LGL region. Thus, in 2001, 2002, and 2004 we collected 132 mute swans from LGL coastal marshes in Ontario, Canada, to determine dietary composition and to evaluate 1) seasonal and sex-related variation in adult diets and 2) age-related dietary differences. Adult diets did not differ among years, collection sites, or seasons, but female diets contained more pondweed spp. (Potamogeton spp.) and less slender naiad (Najas flexilis) and common waterweed (Elodea canadensis) than did diets of males. Adult males, adult females, and cygnets had similar diets during summer and autumn. Overall, mute swan diets mainly consisted of above-ground biomass of pondweed spp., muskgrass (Chara vulgaris), coontail (Ceratophyllum demersum), slender naiad, common waterweed, wild celery (Vallisneria americana), and wild rice (Zizania palustris); below-ground parts of wild celery, sago pondweed (Stuckenia pectinatus), and arrowhead spp. (Sagittaria spp.) were eaten infrequently. Comparison of our findings with those of other diet studies suggested considerable dietary overlap between mute swans and several other species of native waterfowl. Thus, we suggest that mute swans have potential to compete with native waterfowl and impact aquatic plants that are important waterfowl foods within LGL coastal marshes. Further, our results can be used to assess which aquatic plant species may be most impacted by foraging activities of mute swans at other important waterfowl stopover and wintering sites in North America. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):726–732; 2008)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号