首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recurrent excitatory circuits and abnormal recurrent excitatory inputs are essential in epileptogenesis. Studies in temporal lobe epilepsy have shown that mossy fiber sprouting, which represents synaptic reorganization, renders the formation of abnormal recurrent excitatory circuits and inputs. The mammalian target of rapamycin (mTOR) pathway has recently been proved important in mossy fiber sprouting. In the present study, rapamycin, a mTOR inhibiter, was injected into the mouse of temporal lobe epilepsy. Electrophysiological and histological properties of the hippocampus were investigated by whole cell patch clamp, extracellular recording and Timm staining. Following the development of epilepsy, frequency of spontaneous excitatory postsynaptic currents (EPSCs) and amplitude of antidromically evoked EPSCs in granule cells were remarkably increased, as well as the epileptiform activity and mossy fiber sprouting were detected, which indicated the formation of abnormal recurrent excitatory circuits. By the use of rapamycin, frequency of spontaneous EPSCs, amplitude of antidromically evoked EPSCs, the epileptiform activity and mossy fiber sprouting were all remarkably suppressed. Our findings suggested an anti-epileptogenic role of rapamycin by suppressing the recurrent excitatory circuits of dentate gyrus.  相似文献   

2.
Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.  相似文献   

3.
Mossy cells (MCs) are glutamatergic cells of the dentate gyrus with an important role in temporal lobe epilepsy. Under physiological conditions MCs can control both network excitations via direct synapses to granule cells and inhibition via connections to GABAergic interneurons innervating granule cells. In temporal lobe epilepsy mossy cell loss is one of the major hallmarks, but whether the surviving MCs drive or inhibit seizure initiation and generalization is still a debate. The aim of the present review is to summarize the latest findings on the role of mossy cells in healthy and overexcited hippocampus.  相似文献   

4.
Nadler JV  Tu B  Timofeeva O  Jiao Y  Herzog H 《Peptides》2007,28(2):357-364
In the epileptic brain, hippocampal dentate granule cells become synaptically interconnected through the sprouting of mossy fibers. This new circuitry is expected to facilitate epileptiform discharge. Prolonged seizures induce the long-lasting neoexpression of neuropeptide Y (NPY) in mossy fibers. NPY is released spontaneously from recurrent mossy fiber terminals, reduces glutamate release from those terminals by activating presynaptic Y2 receptors, and depresses granule cell epileptiform activity dependent on the recurrent pathway. These effects are much greater in rats than in C57BL/6 mice, despite apparently equivalent mossy fiber sprouting and neoexpression of NPY. This species difference can be explained by contrasting changes in the expression of mossy fiber Y2 receptors; seizures upregulate Y2 receptors in rats but downregulate them in mice. The recurrent mossy fiber pathway may synchronize granule cell discharge more effectively in humans and mice than in rats, due to its lower expression of either NPY (humans) or Y2 receptors (mice).  相似文献   

5.
6.
Walker MC  Ruiz A  Kullmann DM 《Neuron》2001,29(3):703-715
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.  相似文献   

7.
Recurrent seizures can induce mossy fiber sprouting (MFS), of the hippocampal dentate gyrus, and synaptic reorganization in mature brain. This changes local circuits and provides a structural basis for epileptogenesis in the hippocampus. However, the mechanisms of MFS and synaptic reorganization still remain unclear. Neural-cadherin (N-cadherin), a calcium adhesion molecule, plays an important role in neurite outgrowth, pathfinding, and synaptic specificity of early central nervous system development. It is unknown whether N-cadherin is involved in MFS after seizures in mature brain. To further examine the correlation between MFS and N-cadherin expression, we separately labeled MFS and N-cadherin with Timm staining and antibody in adult rats after status epilepticus (SE). Timm staining revealed that MFS is observed in the inner molecular layer of dentate gyrus of rats 2 and 4 weeks after SE. The observed MFS migrated from the hilus to the granule cell layer, gradually extending axons into the inner molecular layer to form an intense band. Immunohistochemical staining of N-cadherin revealed that the upregulated expression of N-cadherin was concentrated in the position of mossy fiber axonal sprouts of rats 1-4 weeks after SE, and that it was earlier than MFS. The spatial and temporal distribution consistence of N-cadherin and Timm staining supported the correlation that exists between N-cadherin expression and the process of aberrant MFS. This result suggests that N-cadherin may be involved in the pathfinding and synaptic specificity of MFS in mature brain after seizures, and can play an important role in the targeted growth of mossy fibers.  相似文献   

8.
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.  相似文献   

9.
Seizures set in motion complex molecular and morphological changes in vulnerable structures, such as the hippocampal complex. A number of these changes are responsible for neuronal death of CA3 and hilar cells, which involves necrotic and apoptotic mechanisms. In surviving dentate granule cells seizures induce an increased expression of tubulin subunits and microtubule-associated proteins, suggesting that an overproduction of tubulin polymers would lead to a remodeling of mossy fibers (the axons of granule cells). In fact, these fibers sprout in the dentate gyrus to innervate granule cell dendrites, creating recurrent excitatory circuits. In contrast, terminal mossy fibers do not sprout in the CA3 field. Navigation of mossy fiber's growth cones may be facilitated by astrocytes, which would exert differential effects by producing and excreting cell adhesion and substrate molecules. In the light of the results discussed here, we suggest that in adult brain activated-resident astrocytes (nonproliferating, tenascin-negative, neuronal cell-adhesion molecule-positive astrocytes) could contribute to the process of axonal outgrowth and synaptogenesis in the dentate gyrus, while proliferating astrocytes, tenascin-positive, could impede any axonal rearrangement in CA3. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders. Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber. Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders.  相似文献   

11.
GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy.   总被引:7,自引:0,他引:7  
Mesial temporal lobe epilepsy (MTLE) is the most prevalent form of epilepsy, characterized by recurrent complex partial seizures and hippocampal sclerosis. The pathophysiology underlying this disorder remains unidentified. While a loss of benzodiazepine binding sites is a key diagnostic feature of MTLE, experimental studies have shown enhanced inhibitory transmission and increased expression of GABA(A)-receptors, suggesting that compensatory mechanisms are operative in epileptic hippocampus. In the present study, changes in the expression and cellular distribution of major GABA(A)-receptor subunits were investigated in the hippocampus of pilocarpine-treated rats during the phase of spontaneous recurrent seizures. A uniform decrease in GABA(A)-receptor subunit-immunoreactivity was observed in regions of extensive neuronal death (i.e. CA1, CA3, hilus). whereas a prominent increase occurred in the dentate gyrus (DG). Most strikingly, the increase was largest for the alpha3- and alpha5-subunits, which are expressed at very low levels in the DG of control rats, suggesting the formation of novel GABA(A)-receptor subtypes in epileptic tissue. Furthermore, an extensive loss of interneurons expressing the alpha1-subunit, representing presumptive basket cells, was seen in the DG. These changes were very similar to those reported in a novel mouse model of MTLE, based on the unilateral injection of kainic acid into the dorsal hippocampus (Bouilleret et al., 1999). This indicates that the regulation of GABA(A)-receptor expression is related to chronic recurrent seizures, and is not due to the extrahippocampal neuronal damage affecting pilocarpine-treated rats. These results allow causal relationships in the induction and maintenance of chronic recurrent seizures to be distinguished. The loss of a critical number of interneurons in the DG is a possible cause of seizure initiation, whereas the long-lasting upregulation of GABA(A)-receptors in granule cells represents a compensatory response to seizure activity.  相似文献   

12.
Summary Ultrastructural changes in hippocampal granule cells, mossy fibers and mossy fiber boutons were examined following the administration of picrotoxin in adult rats. Generalized seizures occurred within 5–10 min after the intraperitoneal injection of picrotoxin. The electron-microscopic examination of hippocampal tissues from rats that had been perfused with fixative during the seizure revealed that the large dense-core vesicles increased in number and accumulated on the presynaptic membranes of mossy fiber boutons; some of these vesicles appeared to be fused with the membranes, and omega-shaped exocytotic profiles were frequently seen. Furthermore, greatly increased numbers of coated vesicles (60–90 nm in diameter) were observed on the maturing faces of Golgi fields of granule cells. Thus, our study not only indicates an increased incidence of exocytosis of large dense-core vesicles during picrotoxin-induced seizures, but also suggests that these vesicles are replaced in excess from the perikaryon of the granule cell.  相似文献   

13.
Immunohistochemical analysis of the hippocampus of a transgene mutant line of the mice (genetic model of temporal epilepsy) demonstrated a progressive increase in the level of brain-derived neurotrophic factor (BDNF) in granular cells of the dentate gyrus and their axons; this increase correlated with an enhancement of the level of epileptic activity. Epileptogenic reprojection of mossy fibers toward an internal zone of the molecular layer of the hippocampus was also observed. In addition, we observed excessive spreading of the zone of axon branching of GABA-ergic basket cells, as compared with the norm; their maximum collateralization was found within an internal zone of the molecular layer of the dentate gyrus. This allows us to hypothesize that the processes of sprouting of the mossy fibers and recovery of recurrent inhibition of the granular cells are interrelated.  相似文献   

14.
Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.  相似文献   

15.
Seizure activity in the hippocampal region strongly affects stem cell-associated plasticity in the adult dentate gyrus. Here, we describe how seizures in rodent models of mesial temporal lobe epilepsy (mTLE) affect multiple steps in the developmental course from the dividing neural stem cell to the migrating and integrating newborn neuron. Furthermore, we discuss recent evidence indicating either that seizure-induced aberrant neurogenesis may contribute to the epileptic disease process or that altered neurogenesis after seizures may represent an attempt of the injured brain to repair itself. Last, we describe how dysfunction of adult neurogenesis caused by chronic seizures may play an important role in the cognitive comorbidities associated with mTLE.The epilepsies are a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures. Some epilepsies result from inherited mutations in single or multiple genes, termed idiopathic or primary epilepsies, whereas symptomatic or secondary epilepsies develop as a consequence of acquired brain abnormalities, such as from tumor, trauma, stroke, infection, or developmental malformation. Of acquired epilepsies, mesial temporal lobe epilepsy (mTLE) is a particularly common and often intractable form. In addition to pharmacoresistant seizures, the syndrome of mTLE almost always involves impairments in cognitive function (Helmstaedter 2002; Elger et al. 2004; von Lehe et al. 2006) that may progress even with adequate seizure control (Blume 2006).Seizure activity in mTLE subjects typically arises from the hippocampus or other mesial temporal lobe structures. Simple and complex partial seizures, the most common seizure types in this epilepsy syndrome, often become medically refractory and may respond only to surgical resection of the epileptogenic tissue. Patients usually also have secondarily generalized tonic–clonic seizures, although these are often controlled by anticonvulsants. Hippocampi in pharmacoresistant mTLE usually show substantial structural abnormalities that include pyramidal cell loss, astrogliosis, dentate granule cell axonal reorganization (mossy fiber sprouting), and dispersion of the granule cell layer (GCL) (Blumcke et al. 1999, 2012).Humans with mTLE often have a history of an early “precipitating” insult, such as a prolonged or complicated febrile seizure, followed by a latent period and then the development of epilepsy in later childhood or adolescence. These historical findings have led to the development of what are currently the most common animal models, the status epilepticus (SE) models, used to study epileptogenic mechanisms in mTLE. In these models, a prolonged seizure induced by chemoconvulsant (typically kainic acid or pilocarpine) treatment or electrical stimulation leads to an initial brain injury, followed, after a latent period of days to weeks, by spontaneous recurrent seizures. These models recapitulate much of the pathology of human mTLE (reviewed in Buckmaster 2004). Experimental paradigms are necessary to investigate mechanisms underlying mTLE, as surgical specimens from mTLE cases are collected at late stages of the disease and, thus, are unlikely to reveal early features critical for the disease process. Studies of experimental mTLE indicate that excess neural activity in the course of seizures not only damages existing, mature structures of the hippocampal formation but also dramatically affects endogenous neural stem cells (NSCs) within the adult rodent dentate gyrus (Bengzon et al. 1997; Parent et al. 1997; Scott et al. 1998). In the following, we will discuss the consequences of seizure activity on proliferation of NSCs, maturation and integration of newborn neurons, and the functional relevance of seizure-induced neurogenesis.  相似文献   

16.
In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a post-maturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus.  相似文献   

17.
Reactive changes in hippocampal astrocytes are frequently encountered in association with temporal lobe epilepsy in humans and with drug or kindling-induced seizures in animal models. These reactive changes generally involve increases in astrocyte size and number and often occur together with neuronal loss and synaptic rearrangements. In addition to producing astrocytic changes, seizure activity can also produce reactive changes in microglia, the resident macrophages of brain. In this study, we examined the effects of recurrent seizure activity on hippocampal neurons and glia in the epileptic EL mouse, a natural model of human multifactorial idiopathic epilepsy and complex partial seizures. Timm staining was used to evaluate infrapyramidal mossy fiber organization and the optical dissector method was used to count Nissl-stained neurons in hippocampus of adult (about one year of age) EL mice and nonepileptic C57BL/6J (B6) and DDY mice. Immunostaining forglial fibrillary acidic protein (GFAP) and Iba1, an actin cross-linking molecule restricted to macrophages and microglia, was used to evaluate astrocytes and microglia, respectively. The EL mice experienced about 25–30 complex partial seizures with secondary generalization during routine weekly cage changing. No significant differences were found among the mouse strains for Timm staining scores or for neuronal counts in the CA1 and CA3 pyramidal fields or in the hilus. However, the number of GFAP-positive astrocytes was significantly elevated in the stratum radiatum and hilus of EL mice, while microglia appeared hyper-ramified and were more intensely stained in EL mice than in the B6 or DDY mice in the hilus, parietal cortex, and pyriform cortex. The results indicate that recurrent seizure activity in EL mice is associated with abnormalities in hippocampal astrocytes and brain microglia, but is not associated with obvious neuronal loss or mossy fiber synaptic rearrangements. The EL mouse can be a useful model for evaluating neuron-glia interactions related to idiopathic epilepsy.  相似文献   

18.
Lee CY  Jaw T  Tseng HC  Chen IC  Liou HH 《PloS one》2012,7(6):e38789
This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis.  相似文献   

19.
齿状回在慢性电刺激诱发大鼠颞叶癫痫中的可能作用   总被引:3,自引:0,他引:3  
Zhang XR  Han D  Tang YF  Liu ML  Yin SJ 《生理学报》2001,53(3):235-239
本文探讨了齿状回(DG)及海马(HPC)在颞叶癫痫发生中的可能作用,分别强直电刺激(60Hz,0.4-0.6mA,2s)大鼠右背侧海马(DHPC)和DG制作慢性癫痫模型,观察大鼠行为,深部电图及脑区T2加权核磁共振成像(T2-WI)的改变,发现DG刺激组大鼠的原发性湿狗样抖频率明显低于HPC刺激组(P<0.05),其深部电图脑波的平均最高振幅也明显低于HPC刺激组大鼠(P<0.05),而PC电图的电振荡发生率增加,另外,HPC刺激组大鼠呈现T2-WI高信号强度,而DG刺激组大鼠T2-WI信号强度无明显改变(P<0.05),结果表明,DG在内嗅皮质(EC)-HPC环路中可能起着某种“过滤器”的作用,限制来自于大脑皮层通过EC到达HPC的神经信息,一旦丧失该作用可以导致HPC的损害并发生颞叶癫痫。  相似文献   

20.
Abstract: Neuropeptide Y (NPY) gene expression is known to be modulated in the mossy fiber projection of hippocampal granule cells following seizure. We investigated NPY biosynthesis and metabolism in an attempt to characterize NPY biochemically as a neurotransmitter in the granule cell mossy fiber projection. NPY biosynthesis was compared in normal control animals and in animals that had experienced a single pentylenetetrazole-induced seizure. In situ hybridization analysis established the postseizure time course of preproNPY mRNA expression in the hippocampal formation, localizing the majority of increased preproNPY mRNA content to the hilus of the dentate gyrus. Radioimmunoassay analysis of the CA3/mossy fiber terminal subfield confirmed a subsequent increase in NPY peptide content. Biosynthesis of NPY peptide by granule cells and transport to the CA3/mossy fiber subfield was demonstrated by in vivo radiolabel infusion to the dentate gyrus/hilus followed by sequential HPLC purification of identified radiolabeled peptide from the CA3/mossy fiber terminal subfield. Additional in vivo radiolabeling studies revealed a postseizure increase in an unidentified NPY-like immunoreactive (NPY-LI) species. HPLC/radioimmunoassay analyses of CA3 subfield tissue extracts comparing normal control animals and pentylenetetrazole-treated animals confirmed the increased total NPY-LI, and demonstrated that the increased NPY-LI was comprised of a minor increase in native NPY and a major increase in the unknown NPY-LI. Data from subsequent and separate analyses incorporating immunoprecipitation with anti-C-terminal flanking peptide of NPY, further HPLC purification, and matrix-assisted laser desorption/ionization mass spectrometry support the conclusion that the unknown NPY-LI is methionine sulfoxide NPY. NPY and NPY-sulfoxide displayed differential calcium sensitivity for release from mossy fiber synaptosomes. Similar to NPY, NPY sulfoxide displayed high-affinity binding to each of the cloned Y1, Y2, Y4, and Y5 receptor subtypes. Postrelease inactivation of NPY was demonstrated in a mossy fiber synaptosomal preparation. Thus, the present study in combination with previously reported electrophysiological activity of NPY in the CA3 subfield demonstrates that NPY fulfills the classical criteria for a neurotransmitter in the hippocampal granule cell mossy fiber projection, and reveals the presence of two molecular forms of NPY that display differential mechanisms of release while maintaining similar receptor potencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号