首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhu  Mei Hong  Lee  Young Mee  Jin  Nange  So  Insuk  Kim  Ki Whan 《Neurophysiology》2003,35(3-4):302-307
The transient receptor potential protein homologue TRPC5 was reported as a molecular identity for the muscarinic receptor-activated nonselective cationic channel (NSCC) in the murine stomach smooth muscle. The canonical, or classical, transient receptor potential proteins, TRPC4 and TRPC5, were suggested as members of the same subfamily of TRPC channels and to be coexpressed as a heteromultimer of both TRPC as well as a homotetramer of each TRPC protein. Thus, we investigated whether the TRPC4 channel is also responsible for the NSCC activated by acetylcholine (ACh) or carbachol (CCh) using electrophysiological techniques. The TRPC channels were expressed in HEK293 cells. When murine TRPC4 channels (mTRPC4) were expressed, the current–voltage relationship of mTRPC4 was also similar to that recorded in native murine gastric myocytes or mTRPC5-expressing HEK cells. With 0.2 mM GTPγS in the pipette solution, the currents in mTRPC4-expressing cells were activated transiently like those in NSCC in the murine stomach and the expressed mTRPC5. The currents recorded in mTRPC4-expressing cells were inhibited by 1 mM La3+ and 100 μM flufenamate. The currents recorded in mTRPC4-expressing cells depended on the extracellular calcium concentration. From the above results, we suggest that mTRPC4/5 might be candidates for the NSCC activated by ACh or CCh in the murine stomach.  相似文献   

2.
3.
4.
We investigated the effect of calmodulin (CaM) and myosin light chain kinase (MLCK) on murine ileal myocytes using the whole-cell patch-clamp technique. Under the voltage clamp, at the holding potential of -60 mV, 50 micromol/L carbachol (CCh) induced inward currents (I CCh), and spontaneous decay of I CCh occurred. The peak inward currents induced by the repetitive application of CCh (50 micromol/L) tended to decrease in amplitude. Intracellular application of 0.2 mmol/L guanosine 5'-O-(gamma-thio)triphosphate (GTP gammaS) from the patch electrode induced an inward current at a holding potential of -60m V, and the peak inward currents induced by the repetitive application of Cs tended to decrease slightly in amplitude. The amplitude of I CCh was reduced by pretreatment either with W-7, trifluoroperazine, W-5, and melittin (CaM inhibitors) or with ML-7 and ML-9 (selective MLCK inhibitors), and the inhibitory effects were reversible. However, when we pretreated with 50 micromol/L W-7 or 5 micromol/L ML-7 on GTP gammaS-induced inward currents, almost no inhibition was observed in the inward currents. Application of both Rho kinase inhibitor and MLCK inhibitor inhibited GTP gammaS-induced currents. We conclude that CaM and MLCK modulate the activation process of I CCh in murine ileal myocytes and suggest that the classical type transient receptor potential (TRPC) channel 5 might be a candidate for nonselective cationic currents (NSCC) activated by muscarinic stimulation in gastrointestinal smooth muscle cells.  相似文献   

5.
Lee KP  Jun JY  Chang IY  Suh SH  So I  Kim KW 《Molecules and cells》2005,20(3):435-441
Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, 50 mM carbachol (CCh) induced INSCC of amplitude [500.8+/-161.8 pA (n=8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from 1525.6+/-414.4 pA (n=8) to 146.4+/-83.3 pA (n=10) by anti-TRPC4 antibody and INSCC amplitudes were reduced from 230.9+/-36.3 pA (n=15) to 49.8+/-11.8 pA (n=9). Furthermore, INSCC in the gastric smooth muscle cells of TRPC4 knockout mice was only 34.4+/-10.4 pA (n=8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.  相似文献   

6.
The classic type of transient receptor potential channel (TRPC) is a molecular candidate for Ca(2+)-permeable cation channel in mammalian cells. TRPC5 is desensitized rapidly after activation by G protein-coupled receptor. Herein we report our investigation into the desensitization of mTRPC5 and localization of the molecular determinants of this desensitization using mutagenesis. TRPC5 was initially activated by muscarinic stimulation using 100 microM carbachol (CCh) and then decayed rapidly even in the presence of CCh (desensitization). Increased EGTA or omission of MgATP in the pipette solution slowed the rate of this desensitization. The protein kinase C (PKC) inhibitors, 1 microM chelerythrine, 100 nM GF109203X, or PKC peptide inhibitor (19-36), inhibited this desensitization of TRPC5 activated by 100 microM CCh. When TRPC5 current was activated by intracellular GTPgammaS, PKC inhibitors prevented TRPC5 desensitization and the mutation of TRPC5 T972 to alanine slowed the desensitization process dramatically. We conclude that the desensitization of TRPC5 occurs via PKC phosphorylation and suggest that threonine at residue 972 of mouse TRPC5 might be required for its phosphorylation by PKC.  相似文献   

7.
The regulation and control of plasma membrane Ca(2+) fluxes is critical for the initiation and maintenance of a variety of signal transduction cascades. Recently, the study of transient receptor potential channels (TRPs) has suggested that these proteins have an important role to play in mediating capacitative calcium entry. In this study, we have isolated a cDNA from human brain that encodes a novel transient receptor potential channel termed human TRP7 (hTRP7). hTRP7 is a member of the short TRP channel family and is 98% homologous to mouse TRP7 (mTRP7). At the mRNA level hTRP7 was widely expressed in tissues of the central nervous system, as well as some peripheral tissues such as pituitary gland and kidney. However, in contrast to mTRP7, which is highly expressed in heart and lung, hTRP7 was undetectable in these tissues. For functional analysis, we heterologously expressed hTRP7 cDNA in an human embryonic kidney cell line. In comparison with untransfected cells depletion of intracellular calcium stores in hTRP7-expressing cells, using either carbachol or thapsigargin, produced a marked increase in the subsequent level of Ca(2+) influx. This increased Ca(2+) entry was blocked by inhibitors of capacitative calcium entry such as La(3+) and Gd(3+). Furthermore, transient transfection of an hTRP7 antisense expression construct into cells expressing hTRP7 eliminated the augmented store-operated Ca(2+) entry. Our findings suggest that hTRP7 is a store-operated calcium channel, a finding in stark contrast to the mouse orthologue, mTRP7, which is reported to enhance Ca(2+) influx independently of store depletion, and suggests that human and mouse TRP7 channels may fulfil different physiological roles.  相似文献   

8.
TRPC1 and TRPC5 form a novel cation channel in mammalian brain   总被引:43,自引:0,他引:43  
TRP proteins are cation channels responding to receptor-dependent activation of phospholipase C. Mammalian (TRPC) channels can form hetero-oligomeric channels in vitro, but native TRPC channel complexes have not been identified to date. We demonstrate here that TRPC1 and TRPC5 are subunits of a heteromeric neuronal channel. Both TRPC proteins have overlapping distributions in the hippocampus. Coexpression of TRPC1 and TRPC5 in HEK293 cells resulted in a novel nonselective cation channel with a voltage dependence similar to NMDA receptor channels, but unlike that of any reported TRPC channel. TRPC1/TRPC5 heteromers were activated by G(q)-coupled receptors but not by depletion of intracellular Ca(2+) stores. In contrast to the more common view of the TRP family as comprising store-operated channels, we propose that many TRPC heteromers form diverse receptor-regulated nonselective cation channels in the mammalian brain.  相似文献   

9.
Transient receptor potential proteins (TRP) are supposed to participate in the formation of store-operated Ca(2+) influx channels by co-assembly. However, little is known which domains facilitate the interaction of subunits. Contribution of the N-terminal coiled-coil domain and ankyrin-like repeats and the putative pore region of the mouse TRP1beta (mTRP1beta) variant to the formation of functional cation channels were analyzed following overexpression in HEK293 (human embryonic kidney) cells. MTRP1beta expressing cells exhibited enhanced Ca(2+) influx and enhanced whole-cell membrane currents compared to mTRP1beta deletion mutants. Using a yeast two-hybrid assay only the coiled-coil domain facilitated homodimerization of the N-terminus. These results suggest that the N-terminus of mTRP1beta is required for structural organization thus forming functional channels.  相似文献   

10.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

11.
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.  相似文献   

12.
The classical transient receptor potential channel 5 (TRPC5) is a molecular candidate for nonselective cation channel (NSCC) activated by muscarinic receptor stimulation whereas extracellular pH inhibits or enhances NSCC activated by muscarinic receptor stimulation depending on extracellular cation compositions in native tissues. We investigated the effect of extracellular pH on TRPC5 and determined amino acid residues responsible for sensing extracellular pH. Extracellular acidosis inhibits TRPC5 with pKa of 6.24. Under 50 mM intracellular HEPES buffer condition, extracellular acidosis inhibits TRPC5 with pKa of 5.40. We changed titratable amino acids (C, D, E, H, K, R, Y) to nontitratable amino acids (A, N, Q, N, N, N, F) within pore region between transmembrane segments 5 and 6 in order to determine the residues sensing extracellular pH. Glutamate (at the position 543, 595, and 598), aspartate (at the position 548) and lysine (at the position 554) were responsible for sensing extracellular pH. The effect of extracellular pH in TRPC5 was also dependent on the composition of extracellular monovalent cations. In conclusion, TRPC5 is a molecular candidate for NSCC activated by muscarinic receptor stimulation, has glutamate amino acid residues responsible for sensing extracellular pH, and has a unique gating property depending on the composition of extracellular monovalent cations.  相似文献   

13.
Characterization of mammalian homologues of Drosophila transient receptor potential protein (TRP) is an important clue to understand molecular mechanisms underlying Ca(2+) influx activated in response to stimulation of G(q) protein-coupled receptors in vertebrate cells. Here we have isolated cDNA encoding a novel seventh mammalian TRP homologue, TRP7, from mouse brain. TRP7 showed abundant RNA expression in the heart, lung, and eye and moderate expression in the brain, spleen, and testis. TRP7 recombinantly expressed in human embryonic kidney cells exhibited distinctive functional features, compared with other TRP homologues. Basal influx activity accompanied by reduction in Ca(2+) release from internal stores was characteristic of TRP7-expressing cells but was by far less significant in cells expressing TRP3, which is structurally the closest to TRP7 in the TRP family. TRP7 induced Ca(2+) influx in response to ATP receptor stimulation at ATP concentrations lower than those necessary for activation of TRP3 and for Ca(2+) release from the intracellular store, which suggests that the TRP7 channel is activated independently of Ca(2+) release. In fact, TRP7 expression did not affect capacitative Ca(2+) entry induced by thapsigargin, whereas TRP7 greatly potentiated Mn(2+) influx induced by diacylglycerols without involvement of protein kinase C. Nystatin-perforated and conventional whole-cell patch clamp recordings from TRP7-expressing cells demonstrated the constitutively activated and ATP-enhanced inward cation currents, both of which were initially blocked and then subsequently facilitated by extracellular Ca(2+) at a physiological concentration. Impairment of TRP7 currents by internal perfusion of the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid revealed an essential role of intracellular Ca(2+) in activation of TRP7, and their potent activation by the diacylglycerol analogue suggests that the TRP7 channel is a new member of diacylglycerol-activated cation channels. Relative permeabilities indicate that TRP7 is slightly selective to divalent cations. Thus, our findings reveal an interesting correspondence of TRP7 to the background and receptor stimulation-induced cation currents in various native systems.  相似文献   

14.
15.
16.
Potassium channels activated by membrane stretch may contribute to maintenance of relaxation of smooth muscle cells in visceral hollow organs. Previous work has identified K(+) channels in murine colon that are activated by stretch and further regulated by NO-dependent mechanisms. We have screened murine gastrointestinal, vascular, bladder, and uterine smooth muscles for the expression of TREK and TRAAK mRNA. Although TREK-1 was expressed in many of these smooth muscles, TREK-2 was expressed only in murine antrum and pulmonary artery. TRAAK was not expressed in any smooth muscle cells tested. Whole cell currents from TREK-1 expressed in mammalian COS cells were activated by stretch, and single channel recordings showed that the stretch-dependent conductance was due to 90 pS channels. Sodium nitroprusside (10(-6) or 10(-5) m) and 8-Br-cGMP (10(-4) or 10(-3) m) increased TREK-1 currents in perforated whole cell and single channel recordings. Mutation of the PKG consensus sequence at serine 351 blocked the stimulatory effects of sodium nitroprusside and 8-Br-cGMP on open probability without affecting the inhibitory effects of 8-Br-cAMP. TREK-1 encodes a component of the stretch-activated K(+) conductance in smooth muscles and may contribute to nitrergic inhibition of gastrointestinal muscles.  相似文献   

17.
The coupling between receptor-mediated Ca2+ store release and the activation of "store-operated" Ca2+ entry channels is an important but so far poorly understood mechanism. The transient receptor potential (TRP) superfamily of channels contains several members that may serve the function of store-operated channels (SOCs). The 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2, is a recently described inhibitor of SOC activity in T-lymphocytes. We compared its action on SOC activation in a number of cell types and evaluated its modification of three specific TRP channels, canonical transient receptor potential 3 (TRPC3), TRPC5, and TRPV6, to throw light on any link between SOC and TRP channel function. Using HEK293 cells, DT40 B cells, and A7r5 smooth muscle cells, BTP2 blocked store-operated Ca2+ entry within 10 min with an IC50 of 0.1-0.3 microM. Store-operated Ca2+ entry induced by Ca2+ pump blockade or in response to muscarinic or B cell receptor activation was similarly sensitive to BTP2. Using the T3-65 clonal HEK293 cell line stably expressing TRPC3 channels, TRPC3-mediated Sr2+ entry activated by muscarinic receptors was also blocked by BTP2 with an IC50 of <0.3 microM. Importantly, direct activation of TRPC3 channels by diacylglycerol was also blocked by BTP2 (IC50 approximately 0.3 microM). BTP2 still blocked TRPC3 in medium with N-methyl-D-glucamine-chloride replacing Na+, indicating BTP2 did not block divalent cation entry by depolarization induced by activating monovalent cation entry channels. Whereas whole-cell carbachol-induced TRPC3 current was blocked by 3 microM BTP2, single TRPC3 channel recordings revealed persistent short openings suggesting BTP2 reduces the open probability of the channel rather than its pore properties. TRPC5 channels transiently expressed in HEK293 cells were blocked by BTP2 in the same range as TRPC3. However, function of the highly Ca(2+)-selective TRPV6 channel, with many channel properties akin to SOCs, was entirely unaffected by BTP2. The results indicate a strong functional link between the operation of expressed TRPC channels and endogenous SOC activity.  相似文献   

18.
Hypotonic stimulation induces airway constriction in normal and asthmatic airways. However, the osmolarity sensor in the airway has not been characterized. TRPV4 (also known as VR-OAC, VRL-2, TRP12, OTRPC4), an osmotic-sensitive cation channel in the transient receptor potential (TRP) channel family, was recently cloned. In the present study, we show that TRPV4 mRNA was expressed in cultured human airway smooth muscle cells as analyzed by RT-PCR. Hypotonic stimulation induced Ca(2+) influx in human airway smooth muscle cells in an osmolarity-dependent manner, consistent with the reported biological activity of TRPV4 in transfected cells. In cultured muscle cells, 4alpha-phorbol 12,13-didecanoate (4-alphaPDD), a TRPV4 ligand, increased intracellular Ca(2+) level only when Ca(2+) was present in the extracellular solution. The 4-alphaPDD-induced Ca(2+) response was inhibited by ruthenium red (1 microM), a known TRPV4 inhibitor, but not by capsazepine (1 microM), a TRPV1 antagonist, indicating that 4-alphaPDD-induced Ca(2+) response is mediated by TRPV4. Verapamil (10 microM), an L-type voltage-gated Ca(2+) channel inhibitor, had no effect on the 4-alphaPDD-induced Ca(2+) response, excluding the involvement of L-type Ca(2+) channels. Furthermore, hypotonic stimulation elicited smooth muscle contraction through a mechanism dependent on membrane Ca(2+) channels in both isolated human and guinea pig airways. Hypotonicity-induced airway contraction was not inhibited by the L-type Ca(2+) channel inhibitor nifedipine (1 microM) or by the TRPV1 inhibitor capsazepine (1 microM). We conclude that functional TRPV4 is expressed in human airway smooth muscle cells and may act as an osmolarity sensor in the airway.  相似文献   

19.
Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives   总被引:14,自引:0,他引:14  
We have studied activation by phorbol derivatives of TRPV4 channels, the human VRL-2, and murine TRP12 channels, which are highly homologous to the human VR-OAC, and the human and murine OTRPC4 channel. 4alpha-Phorbol 12,13-didecanoate (4alpha-PDD) induced an increase in intracellular Ca(2+) concentration, [Ca(2+)](i), in 1321N1 cells stably transfected with human VRL-2 (hVRL-2.1321N1) or HEK-293 cells transiently transfected with murine TRP12, but not in nontransfected or mock-transfected cells. Concomitantly with the increase in [Ca(2+)](i), 4alpha-PDD activated an outwardly rectifying cation channel with an Eisenman IV permeation sequence for monovalent cations that is Ca(2+)-permeable with P(Ca)/P(Na) = 5.8. Phorbol 12-myristate 13-acetate also induced an increase in [Ca(2+)](i) but was approximately 50 times less effective than 4alpha-PDD. EC(50) for Ca(2+) increase and current activation was nearly identical (pEC(50) approximately 6.7). Similar effects were observed in freshly isolated mouse aorta endothelial cells which express TRP12 endogenously. By using 4alpha-PDD as a tool to stimulate TRP12, we showed that activation of this channel is modulated by [Ca(2+)](i); an increase in [Ca(2+)](i) inhibits the channel with an IC(50) of 406 nm. Ruthenium Red at a concentration of 1 microm completely blocks inward currents at -80 mV but has a smaller effect on outward currents likely indicating a voltage dependent channel block. We concluded that the phorbol derivatives activate TRPV4 (VR-OAC, VRL-2, OTRPC4, TRP12) independently from protein kinase C, in a manner consistent with direct agonist gating of the channel.  相似文献   

20.
The TRPM subfamily of mammalian TRP channels displays unusually diverse activation mechanisms and selectivities. One member of this subfamily, TRPM5, functions in taste receptor cells and has been reported to be activated through G protein-coupled receptors linked to phospholipase C. However, the specific mechanisms regulating TRPM5 have not been described. Here, we demonstrate that TRPM5 is a monovalent-specific cation channel with a 23 pS unitary conductance. TRPM5 does not display constitutive activity. Rather, it is activated by stimulation of a receptor pathway coupled to phospholipase C and by IP(3)-mediated Ca(2+) release. Gating of TRPM5 was dependent on a rise in Ca(2+) because it was fully activated by Ca(2+). Unlike any previously described mammalian TRP channel, TRPM5 displayed voltage modulation and rapid activation and deactivation kinetics upon receptor stimulation. The most closely related protein, the Ca(2+)-activated monovalent-selective cation channel TRPM4b, also showed voltage modulation, although with slower relaxation kinetics than TRPM5. Taken together, the data demonstrate that TRPM5 and TRPM4b represent the first examples of voltage-modulated, Ca(2+)-activated, monovalent cation channels (VCAMs). The voltage modulation and rapid kinetics provide TRPM5 with an excellent set of properties for participating in signaling in taste receptors and other excitable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号