首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. S. F. Barker 《Oecologia》1971,8(2):139-156
Summary In interspecific competition studies, some cases of apparent change in competitive ability have been reported. But the change in competitive outcome could equally well be due to character displacement. As a preliminary to studies of the effects of association of D. melanogaster (yellow white mutant strain) and D. simulans (vermilion mutant strain), the nature and extent of ecological differences between them, and the nature of their competitive interaction was studied. Differences between the strains were shown for oviposition site preferences, and for larval and pupal distribution. In pure species cultures, simulans showed a greater preference than melanogaster for oviposition in the center of the medium surface. In mixed populations, simulans had an increased preference for this oviposition site, where melanogaster was at low frequency. D. simulans larvae utilized the lower half of the medium to a significantly greater extent than did melanogaster. At low density (5 pairs of parents) in pure species cultures, 68.7% of simulans pupae were on the medium surface. As parental numbers increased, this proportion decreased. The distribution of melanogaster pupae was quite different, with only 8 to 12% on the medium at all densities. But the remaining pupae tended to occur higher on the cylinder wall as parental numbers increased. The competitive interaction changed during the developmental period. At four and eight days after culture initiation, simulans appeared superior, while for total adult progeny production, melanogaster was slightly superior. These strans of the two species were not ecologically equivalent.  相似文献   

2.
An electrophoretic study was carried out to compare the geographic pattern of genetic variation in Drosophila simulans with that of its sibling species, Drosophila melanogaster. An identical set of 32 gene-protein loci was studied in four geographically distant populations of D. simulans and two populations of D. melanogaster, all originating from Europe and Africa. The comparison yielded the following results: (1) tropical populations of D. simulans were, in terms of the number of unique alleles, average heterozygosity per locus, and percentage of loci polymorphic, more variable than conspecific-temperate populations; (2) some loci in both species showed interpopulation differences in allele frequencies that suggest latitudinal clines; and (3) temperate-tropical genetic differentiation between populations was much less in D. simulans than in D. melanogaster. Similar differences between these two species have previously been shown for chromosomal, quantitative, physiological, and middle-repetitive DNA variation. Estimates of N m (number of migrants per generation) from the spatial distribution of rare alleles suggest that both species have similar levels of interpopulation gene flow. These observations lead us to propose two competing hypotheses: the low level of geographic differentiation in D. simulans is due to its evolutionarily recent worldwide colonization and, alternatively, D. simulans has a narrower niche than D. melanogaster. Geographic variation data on different genetic elements (e.g., mitochondrial DNA, two-dimensional proteins, etc.) are required before these hypotheses can be adequately tested.We thank the Natural Science and Engineering Research Council of Canada for financial support (Grant A0235 to R.S.S.).  相似文献   

3.
Genetic variation at 59 gene loci coding for enzymes (50) and larval proteins (9) has been studied in sympatric populations of Drosophila melanogaster and D. simulans from insular and continental origin. The average number of alleles per locus, the mean proportion of polymorphic loci and the mean heterozygosity are similar both within and between species. There are however some significant differences between D. simulans populations in the genotypic frequencies for four polymorphic loci.  相似文献   

4.
We have analysed the viability of cellular clones induced by mitotic recombination in Drosophila melanogaster/D. simulans hybrid females during larval growth. These clones contain a portion of either melanogaster or simulans genomes in homozygosity. Analysis has been carried out for the X and the second chromosomes, as well as for the 3L chromosome arm. Clones were not found in certain structures, and in others they appeared in a very low frequency. Only in abdominal tergites was a significant number of clones observed, although their frequency was lower than in melanogaster abdomens. The bigger the portion of the genome that is homozygous, the less viable is the recombinant melano-gaster/simulans hybrid clone. The few clones that appeared may represent cases in which mitotic recombination took place in distal chromosome intervals, so that the clones contained a small portion of either melanogaster or simulans chromosomes in homozygosity. Moreover, Lhr, a gene of D. simulans that suppresses the lethality of male and female melanogaster/simulans hybrids, does not suppress the lethality of the recombinant melanogaster/simulans clones. Thus, it appears that there is not just a single gene, but at least one per tested chromosome arm (and maybe more) that cause hybrid lethality. Therefore, the two species, D. melanogaster and D. simulans, have diverged to such a degree that the absence of part of the genome of one species cannot be substituted by the corresponding part of the genome of the other, probably due to the formation of co-adapted gene complexes in both species following their divergent evolution after speciation. The disruption of those coadapted gene complexes would cause the lethality of the recombinant hybrid clones.  相似文献   

5.
The two sibling species D. /melanogaster and D. simulans adopt different overwintering strategies in northern border areas situated in France. If the winter is mild, both species reappear in early spring to refound the population. If the winter is cold, with several weeks of temperatures below 0 °C, D. melanogaster leave their shelters in April whereas D. simulans, which do not use shelters, reappear in late June, probably after returning from further south. Here, we tried to identify life-history characteristics responsible for this difference. For this, we studied developmental duration, viability, fecundity, fertility and longevity, and compared the abilities of French and African populations to survive when food supplies were inadequate, at different temperatures (14, 11, 7 °C). These temperatures are lower than those commonly used in the laboratory but closer to real conditions encountered in the wild. When the temperature was mild (14 or 11 °C) and the food supply was adequate, D. simulans performed better than D. melanogaster: it had a higher fecundity, a longer life expectancy and the males remained fertile, allowing outdoor reproduction late in winter. However, D. simulans was less resistant in more extreme conditions. At 7 °C D. simulans survived shorter on normal medium and its ability to survive when food supplies were inadequate was insufficient to allow outdoor overwintering. In contrast, D. melanogaster could not reproduce during winter: its fecundity was low and males were sterile at 11 °C. Nevertheless, if only protein-deficient resources were available, temperate D. melanogaster could survive for longer than D. simulans at all the temperatures tested. This greater resistance to underfeeding allows the species to survive until spring, in shelters for several months. A comparison of French and African population performances showed differences in the evolution of the two species during the colonization of more northern areas. African D. simulans, which are efficient at mild temperatures, underwent few modifications. In contrast, the viability of D. melanogaster improved at low developmental temperatures. This species also displayed higher fecundity, longer survival and higher underfeeding resistance at low temperatures. The relationship between the long retention genotype and underfeeding resistance or survival ability observed in French D. melanogaster populations may not exist in African populations.  相似文献   

6.
Drosophila melanogaster are found in sympatry with Drosophila simulans, and matings between the species produce nonfertile hybrid offspring at low frequency. Evolutionary theory predicts that females choose mates, so males should alter their behaviour in response to female cues. We show that D. melanogaster males quickly decrease courtship towards D. simulans females. Courtship levels are reduced within 5 min of exposure to a heterospecific female, and overall courtship is significantly lower than courtship towards conspecific females. To understand changes at the molecular level during mate choice, we performed microarray analysis on D. melanogaster males that courted heterospecific D. simulans females and found nine genes have altered expression compared with controls. In contrast, males that court conspecific females alter expression of at least 35 loci. The changes elicited by conspecific courtship likely modulate nervous system function to reinforce positive conspecific signals and dampen the response to heterospecific signals.  相似文献   

7.
Summary Laboratory experiments have shown D. melanogaster adults to be more tolerant to alcohol in the environment than D. simulans, with the females being more tolerant than the males of their species. Larval development on alcohol supplemented media also demonstrated an increased tolerance by D. melanogaster although the effect was not as clear cut as for the adult survival. Oviposition choice experiments demonstrated a marked rejection of alcohol impregnated laying sites by D. simulans when compared to standard medium sites. D. melanogaster showed a slight preference for alcohol supplemented sites.Collections in the maturation cellar of a vineyard produced, with the exception of a single D. simulans fly, entirely D. melanogaster adults while larvae and pupae from the cellar were also all D. melanogaster. Away from the alcohol resource, outside the cellar, both species were collected with D. simulans being the more common. However, the outside distribution of the two species was affected by alcohol fumes during vintage, as was the distribution of the sexes of D. melanogaster, with the more tolerant species or sex being closer to the source. The field results were thus in agreement with the laboratory predictions that D. melanogaster is better able to utilize an alcohol resource than D. simulans.  相似文献   

8.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Replicate lines of Drosophila melanogaster and D. simulans originating from the same location in Australia were selected at two selection intensities (50%, 85% mortality) for increased resistance to desiccation, and scored for correlated responses to see if similar physiological changes were associated with the selection responses. Realized heritabilities were much higher in D. melanogaster. Selected lines of both species were more resistant than control lines to starvation and a toxic ethanol concentration. Both species also showed similar correlated responses for traits underlying the selection response: selected lines lost water at a slower rate and had reduced activity levels in a dry environment, but they did not differ in wet or dry body weight or in water content. For D. melanogaster, realized heritabilities for lines selected at 85% mortality were higher than for lines selected at 50% mortality, but there was no effect of selection intensity for D. simulans. Comparative studies of this nature may be useful in predicting the extent to which species can adapt to stress in the wild.  相似文献   

10.
Wolbachia manipulate insect host biology through a variety of means that result in increased production of infected females, enhancing its own transmission. A Wolbachia strain (wInn) naturally infecting Drosophila innubila induces male killing, while native strains of D. melanogaster and D. simulans usually induce cytoplasmic incompatibility (CI). In this study, we transferred wInn to D. melanogaster and D. simulans by embryonic microinjection, expecting conservation of the male-killing phenotype to the novel hosts, which are more suitable for genetic analysis. In contrast to our expectations, there was no effect on offspring sex ratio. Furthermore, no CI was observed in the transinfected flies. Overall, transinfected D. melanogaster lines displayed lower transmission rate and lower densities of Wolbachia than transinfected D. simulans lines, in which established infections were transmitted with near-perfect fidelity. In D. simulans, strain wInn had no effect on fecundity and egg-to-adult development. Surprisingly, one of the two transinfected lines tested showed increased longevity. We discuss our results in the context of host-symbiont co-evolution and the potential of symbionts to invade novel host species.  相似文献   

11.
Salivary gland X chromosome puffing patterns are described for the Oregon stock of Drosophila melanogaster and for the Berkeley stock of D. simulans. In D. melanogaster regular phase specific puffing was recorded at 21 loci in the third larval instar and subsequent prepupal stage. A comparison of the X chromosome puffing patterns of male and female larvae failed to show any qualitative differences although in the males a group of puffs were active for a longer time during development than in females. The X chromosome puffing patterns of D. simulans are similar to those described for D. melanogaster although two puffs (4F 1–4 and 7B 1–3) were active in D. simulans but not in D. melanogaster. The sex differences in puffing observed in D. melanogaster were also observed in D. simulans.  相似文献   

12.
Examples of clinal variation in phenotypes and genotypes across latitudinal transects have served as important models for understanding how spatially varying selection and demographic forces shape variation within species. Here, we examine the selective and demographic contributions to latitudinal variation through the largest comparative genomic study to date of Drosophila simulans and Drosophila melanogaster, with genomic sequence data from 382 individual fruit flies, collected across a spatial transect of 19 degrees latitude and at multiple time points over 2 years. Consistent with phenotypic studies, we find less clinal variation in D. simulans than D. melanogaster, particularly for the autosomes. Moreover, we find that clinally varying loci in D. simulans are less stable over multiple years than comparable clines in D. melanogaster. D. simulans shows a significantly weaker pattern of isolation by distance than D. melanogaster and we find evidence for a stronger contribution of migration to D. simulans population genetic structure. While population bottlenecks and migration can plausibly explain the differences in stability of clinal variation between the two species, we also observe a significant enrichment of shared clinal genes, suggesting that the selective forces associated with climate are acting on the same genes and phenotypes in D. simulans and D. melanogaster.  相似文献   

13.
The preference–performance relationship in plant–insect interactions is a central theme in evolutionary ecology. Among many insects, eggs are vulnerable and larvae have limited mobility, making the choice of an appropriate oviposition site one of the most important decisions for a female. We investigated the evolution of oviposition preferences in Drosophila melanogaster Meigen and Drosophila simulans Sturtevant by artificially selecting for the preference for 2 natural resources, grape and quince. The main finding of our study is the differential responses of D. melanogaster and D. simulans. Although preferences evolved in the experimental populations of D. melanogaster, responses were not consistent with the selection regimes applied. In contrast, responses in D. simulans were consistent with expectations, demonstrating that this species has selectable genetic variation for the trait. Furthermore, crosses between D. simulans divergent lines showed that the genetic factors involved in grape preference appear to be largely recessive. In summary, our artificial selection study suggests that D. melanogaster and D. simulans possess different genetic architectures for this trait.  相似文献   

14.
Some fitness components of Drosophila melanogaster and D. simulans were measured in control and inter-specific competition tests. The effects derived from different relative frequencies of the competitors were examined under a factorial scheme with two temperatures, 21 °C or room temperature, and with adults developed in mixed- or pure-species cultures. D. melanogaster appeared as a strong competitor and outnumbered D. simulans in all the culture conditions. This was because intraspecific competition was stronger than inter-specific competition for D. melanogaster whereas the reverse occurred for D. simulans. In competition, the productivity of both species generally appeared as frequency-dependent, although density-dependent productivity seems to be a more accurate explanation. D. simulans was very sensitive to variations of laboratory conditions. Room temperature and previous development with D. melanogaster were more favorable for D. simulans than 21 °C and previous development in pure cultures. These factors did not substantially affect D. melanogaster, which showed a greater ability of adaptation to laboratory conditions than its sibling D. simulans.  相似文献   

15.
Y. Inoue 《Genetica》1993,87(3):169-173
The purpose of this study was to evaluate the attached-X method compared with the standard Basc method, and, using this method, to find out whether the observed differences in genetic polymorphisms are related to differences in lethal mutation rates in D. melanogaster and D. simulans. When EMS-treated Drosophila melanogaster males are mated to untreated attached-X females, a decrease in the progeny sex ratio (/+) is observed due to the induced lethal mutations on the X chromosome. The decrease in the frequency of male progeny were shown as the attached-X index. The expected male number is calculated from the control sex ratio. The difference between the expected and the observed male numbers, expressed as the ratio to the expected male number, defines the attached-X index. The index values for various EMS concentrations were compared to the lethal frequencies obtained by the standard Basc method for the same EMS treatments, and gave a highly positive correlation (=0.993, p<0.01, d.f.=2), thus providing an alternative method for evaluation of possible mutagens. The attached-X method was applied to D. simulans, of which natural populations are known to have relatively low genetic variation, and frequencies of the EMS-induced X chromosome lethal mutations were estimated and compared with those in D. melanogaster. The results indicate that D. melanogaster is slightly more sensitive in the sperm and spermatogonial stages, but less susceptible in the spermatid stage when compared with D. simulans. Since the spermatid stage occupies a relatively short period in spermatogenesis, a higher mutability of D. simulans during this stage probably does not make a significant contribution to the genetic variability of this species.  相似文献   

16.
Chakir M  Chafik A  Moreteau B  Gibert P  David JR 《Genetica》2002,114(2):195-205
Numerous different criteria may be used for analysing species thermal adaptation. We compared male sterility thresholds in the two most investigated cosmopolitan siblings, D. melanogaster and D. simulans. A survey of various populations from Europe and North Africa evidenced consistent differences between the two species, and a detailed analysis was made on flies from Marrakech. Sharp sterility thresholds were observed in both species but at different temperatures: D. simulans appeared more tolerant to cold than its sibling (difference 1°C) but more sensitive to heat (difference 1.5°C). When transferred to an optimum temperature of 21°C, D. simulans males, sterilized by a low temperature, recovered more rapidly than males of D. melanogaster; the reverse was true on the high temperature side. The analysis of progeny number also revealed the better tolerance of D. simulans males to cold but a lesser tolerance to heat. From these observations, we might expect that D. simulans should be more successful in cold temperate countries than its sibling, while ecological observations point to the contrary. Our data clearly show the difficulty of comparing ecophysiological data to field observations, and also the need of extensive comparative life history studies in closely related species.  相似文献   

17.
Electrophoretic variants of nonspecific esterases (Est-6 and Est-C) of various populations of Drosophila melanogaster and Drosophila simulans from Northern Greece were studied by means of starch gel electrophoresis, and the results are compared with those obtained from standard stocks. Two new alleles of the Est-6 locus of D. melanogaster and two new alleles of the Est-6 locus of D. simulans are described. The position of the Est-C locus in D. simulans is estimated. Evidence is presented for the genetic homology of the Est-C locus of D. melanogaster and the Est-C locus of D. simulans.  相似文献   

18.
Corrolations between female rejection behaviors and male wing display were calculated for both Drosophila simulans and Drosophila melanogaster intraspicific pair-matings. No significant correlations were found for D. melanogaster, but in D. simulans flicking by the female appeared to be associated with a shift in male wing display pattern resulting in higher levels of vibration. Flicking did not appear to discourage courtship by males in either species.  相似文献   

19.
Drosophila simulans is more abundant under colder and drier montane habitats in the western Himalayas as compared to its sibling D. melanogaster but the mechanistic bases of such climatic adaptations are largely unknown. Previous studies have described D. simulans as a desiccation sensitive species which is inconsistent with its occurrence in temperate regions. We tested the hypothesis whether developmental plasticity of cuticular traits confers adaptive changes in water balance-related traits in the sibling species D. simulans and D. melanogaster. Our results are interesting in several respects. First, D. simulans grown at 15 °C possesses a high level of desiccation resistance in larvae (~39 h) and in adults (~86 h) whereas the corresponding values are quite low at 25 °C (larvae ~7 h; adults ~13 h). Interestingly, cuticular lipid mass was threefold higher in D. simulans grown at 15 °C as compared with 25 °C while there was no change in cuticular lipid mass in D. melanogaster. Second, developmental plasticity of body melanisation was evident in both species. Drosophila simulans showed higher melanisation at 15 °C as compared with D. melanogaster while the reverse trend was observed at 25 °C. Third, changes in water balance-related traits (bulk water, hemolymph and dehydration tolerance) showed superiority of D. simulans at 15 °C but of D. melanogaster at 25 °C growth temperature. Rate of carbohydrate utilization under desiccation stress did not differ at 15 °C in both the species. Fourth, effects of developmental plasticity on cuticular traits correspond with changes in the cuticular water loss i.e. water loss rates were higher at 25 °C as compared with 15 °C. Thus, D. simulans grown under cooler temperature was more desiccation tolerant than D. melanogaster. Finally, desiccation acclimation capacity of larvae and adults is higher for D. simulans reared at 15 °C but quite low at 25 °C. Thus, D. simulans and D. melanogaster have evolved different strategies of water conservation consistent with their adaptations to dry and wet habitats in the western Himalayas. Our results suggest that D. simulans from lowland localities seems vulnerable due to limited acclimation potential in the context of global climatic change in the western Himalayas. Finally, this is the first report on higher desiccation resistance of D. simulans due to developmental plasticity of both the cuticular traits (body melanisation and epicuticular lipid mass) when grown at 15 °C, which is consistent with its abundance in temperate regions.  相似文献   

20.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号