首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study, electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula was investigated. In the ileum, a Na(+)-dependent, phloridzin- and amiloride-insensitive short-circuit current ( Isc) was present. Mucosal glucose stimulated a further phloridzin-sensitive, dose-dependent increase in Isc. A Na(+)-dependent, ouabain-sensitive Isc was also present in the caecum and colon. In the proximal and distal colon, amiloride (100 micro mol l(-1), mucosal) inhibited this Isc by 81+/-4% and 65+/-3%, respectively and the Ki for amiloride (approximately 1 micro mol l(-1)) was consistent with the inhibition of a classical epithelial Na(+) channel. In the caecum, 50% of the Isc was inhibited by amiloride (100 micro mol l(-1), mucosal). The amiloride-insensitive Isc in the colon was not due to electrogenic Cl(-) secretion, as serosal bumetanide (100 micro mol l(-1)) had no effect on the Isc. Furthermore, the secretagogues forskolin (10 micro mol l(-1)), carbachol (100 micro mol l(-1)) and dibutyryl-cAMP or dibutyryl-cGMP (100 micro mol l(-1)) did not stimulate electrogenic Cl(-) secretion by the colon. These results indicate that the transport properties of the hindgut of the possum differ significantly from those of eutherian mammals and may be associated with different functions of the hindgut of possums when compared to eutherian mammals.  相似文献   

2.
Transport in the colon of the domestic fowl switches from sodium-linked hexose and amino acid cotransport on high-salt intake to amiloride-sensitive sodium channel expression on low-salt (LS) diets. The present experiments were designed to investigate the role of aldosterone in suppression of the colonic sodium-glucose luminal cotransporter (SGLT). LS-adapted hens were resalinated with or without simultaneous aldosterone treatment. Changes in the electrophysiological responses and SGLT protein expression levels were examined at 1, 3, and 7 days of treatment. Serum aldosterone levels fell from approximately 400 pmol/l in LS-adapted hens to values below the detection limit (<44 pmol/l) after 1 day of resalination. At the same time, glucose-stimulated short circuit current (I(SC)) increased from 20.9 +/- 8.7 to 56.3 +/- 15.5 microA/cm(2), whereas amiloride-sensitive I(SC) decreased from -68.9 +/- 12.7 microA/cm(2) on LS to +0.6 +/- 12.0 microA/cm(2). Glucose-stimulated I(SC) increased further at 3 and 7 days of resalination, whereas amiloride-sensitive I(SC) remained suppressed. When resalinated birds were simultaneously treated with aldosterone, the LS pattern of high amiloride-sensitive I(SC) and low glucose-stimulated I(SC) was maintained. Immunoblotting results from the same tissues demonstrated that SGLT-like protein expression increased following resalination. Aldosterone treatment completely blocked this effect. These results demonstrate that aldosterone suppresses both activity and protein expression of hen colonic SGLT. Resalination either through decreased aldosterone or other factors may be able to activate SGLT activity independently of increases in protein expression.  相似文献   

3.
To evaluate the developmental changes in colonic Na+ transport, Na, K-ATPase activity and the sensitivity of the short-circuit current to amiloride were investigated. The amiloride-sensitive short-circuit current which represents the electrogenic, amiloride-sensitive Na+ transport through Na+ channels, was not present in chicken embryos but rose significantly after hatching in chicks which were kept on a low-salt diet. Amiloride-sensitive short-circuit current increased gradually but the plateau was not reached during the first 15 days of life. Drinking of 0.9% NaCl totally inhibited the induction of amiloride-sensitive Na+ transport. Na+, K+-ATPase activity increased during development but was not influenced by changes in salt intake. Na+ transport in chicken colon therefore undergoes profound developmental changes. The increase of Na+ transport refleets not only the adaptation of colonocytes to low salt intake but also the maturation of Na+ absorption in colon. The possible role of aldosterone in the adaptation to low-salt intake is discussed.Abbreviations LS low-salt - HS high-salt - I sc short-circuit current  相似文献   

4.
Regulation of transport by principal cells of the distal nephron contributes to maintenance of Na(+) and K(+) homeostasis. To assess which of these ions is given a higher priority by these cells, we investigated the upregulation of epithelial Na(+) channels (ENaC) in the rat cortical collecting duct (CCD) during Na depletion with and without simultaneous K depletion. ENaC activity, assessed as whole cell amiloride-sensitive current in split-open tubules, was 260 ± 40 pA/cell in K-repleted but virtually undetectable (3 ± 1 pA/cell) in K-depleted animals. This difference was confirmed biochemically by the reduced amounts of the cleaved forms of both the α-ENaC and γ-ENaC subunits measured in immunoblots. In contrast, in K-depleted rats, simultaneously reducing Na intake did not affect the activity of ROMK channels, assessed as tertiapin-Q-sensitive whole cell currents, in the CCDs. The lack of Na current in K-depleted animals was the result of reduced levels of aldosterone in plasma, rather than a reduced sensitivity to the hormone. However, rats on a low-Na, low-K diet for 1 wk did not excrete more Na than those on a low-Na, control-K diet for the same period of time. Immunoblot analysis indicated increased levels of the thiazide-sensitive NaCl cotransporter and the apical Na-H exchanger NHE3. This suggests that with reduced K intake, Na balance is maintained despite reduced aldosterone and Na(+) channel activity by upregulation of Na(+) transport in upstream segments. Under these conditions, Na(+) transport by the aldosterone-sensitive distal nephron is reduced, despite the low-Na intake to minimize K(+) secretion and urinary K losses.  相似文献   

5.
6.
Na-H exchange is present in apical membrane vesicles (AMV) isolated from distal colon of normal rats. Because in intact tissue aldosterone both induces amiloride-sensitive electrogenic sodium transport and inhibits electroneutral sodium absorption, these studies with AMV were designed to establish the effect of aldosterone on sodium transport. An outward-directed proton gradient stimulated 22Na uptake in AMV isolated from distal colon of normal and dietary sodium depleted (with elevated aldosterone levels) experimental rats. Unlike normal AMV, proton gradient-dependent 22Na uptake in experimental AMV was inhibited when uptake was measured under voltage-clamped conditions. 10 microM amiloride inhibited the initial rate of proton gradient-dependent 22Na uptake in AMV of normal and experimental rats by 30 and 75%, respectively. In contrast, 1 mM amiloride produced comparable inhibition (90 and 80%) of 22Na uptake in normal and experimental AMV. Intravesicular-negative potential stimulated 22Na uptake in experimental but not in normal AMV. This increase was inhibited by 90% by 10 microM amiloride. An analogue of amiloride, 5-(N-ethylisopropyl) amiloride (1 microM), a potent inhibitor of electroneutral Na-H exchange in AMV of normal rat distal colon, did not alter potassium diffusion potential-dependent 22Na uptake. Increasing sodium concentration saturated proton gradient-dependent 22Na uptake in normal AMV. However, in experimental AMV, 22Na uptake stimulated by both proton gradient and potassium diffusion potential did not saturate as a function of increasing sodium concentration. We conclude from these results that an electrically sensitive conductive channel, not electroneutral Na-H exchange, mediates 22Na uptake in AMV isolated from the distal colon of aldosterone rats.  相似文献   

7.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

8.
Colitis in interleukin-2-deficient (IL-2(-/-)) mice resembles ulcerative colitis in humans. We studied epithelial transport and barrier function in IL-2(-/-) mice and used this model to characterize mechanisms of diarrhea during intestinal inflammation. (22)Na(+) and (36)Cl(-) fluxes were measured in proximal colon. Net Na(+) flux was reduced from 4.0 +/- 0.5 to 0.8 +/- 0.5 micromol.h(-1).cm(-2), which was paralleled by diminished mRNA and protein expression of the Na(+)/H(+) exchanger NHE3. Net Cl(-) flux was also decreased from 2.2 +/- 1.6 to -2.7 +/- 0.6 micromol.h(-1).cm(-2), indicating impaired Na(+)-Cl(-) absorption. In distal colon, aldosterone-induced electrogenic Na(+) absorption was 6.1 +/- 0.9 micromol.h(-1).cm(-2) in controls and was abolished in IL-2(-/-) mice. Concomitantly, mRNA expression of beta- and gamma-subunits of the epithelial sodium channel (ENaC) was reduced. Epithelial barrier was studied in proximal colon by impedance technique and mannitol fluxes. In contrast to ulcerative colitis, epithelial resistance was increased and mannitol fluxes were decreased in IL-2(-/-) mice. This was in accord with the findings of reduced ion transport as well as increased expression of tight junction proteins occludin and claudin-1, -2, -3, and -5. In conclusion, the IL-2(-/-) mucosa exhibits impaired electroneutral Na(+)-Cl(-) absorption and electrogenic Na(+) transport due to reduced mRNA and protein expression of NHE3 and ENaC beta- and gamma-subunit mRNA. This represents a model of early intestinal inflammation with absorptive dysfunction due to impaired transport protein expression/function while epithelial barrier is still intact. Therefore, this model is ideal to study regulation of transporter expression independent of barrier defects.  相似文献   

9.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

10.
Submucosal cholinergic and noncholinergic neurons in intestines have been shown to be involved in regulating epithelial transport functions, particularly stimulating Cl(-) secretion. This study investigates the role of submucosal cholinergic neurons in regulating electrogenic Na(+) absorption in distal colon. Amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux were measured in mucosal and mucosal-submucosal preparations mounted in Ussing chambers. In the mucosal preparation, carbachol (CCh) added to the serosal side inhibited amiloride-sensitive I(sc) and amiloride-sensitive (22)Na(+) absorption. The inhibitory effect of CCh was observed at approximately 0.1 microM, and maximum inhibition of approximately 70% was attained at approximately 30 microM (IC(50) = approximately 1 microM). CCh-induced inhibition of amiloride-sensitive I(sc) was almost totally abolished by 10 microM atropine. Treatment of the tissue with ionomycin markedly reduced amiloride-sensitive I(sc), but a subsequent addition of CCh further decreased it. Also, CCh still had an inhibitory effect, although significantly attenuated, after the tissue had been incubated with a low-Ca(2+) solution containing ionomycin and BAPTA-AM. Applying electrical field stimulation to submucosal neurons in the mucosal-submucosal preparation resulted in inhibition of amiloride-sensitive I(sc), approximately 33% of this inhibition being atropine sensitive. Physostigmine inhibited amiloride-sensitive I(sc), this effect being abolished by atropine. In conclusion, submucosal cholinergic and noncholinergic neurons were involved in inhibiting electrogenic Na(+) absorption in colon. This inhibition by cholinergic neurons was mediated by muscarinic receptor activation.  相似文献   

11.
Aldosterone increases sodium absorption, short circuit current, and transmural potential difference in rat colon. We studied the rat colonic aldosterone receptor using the synthetic glucocorticoid, 11 beta, 17 beta-dihydroxy-17 alpha-propynylandrosta-1,4,6-triene-3-one, to prevent binding to the glucocorticoid receptor. Specific aldosterone binding was found in proximal and distal colon. Heating to 25 degrees C decreased binding within 15 min, but the protease inhibitor, phenylmethylsulfonyl fluoride, stabilized binding. Binding was highest in terminal distal colon. Competitive binding assay showed aldosterone specificity compared to other competitors was greater at 30 than at 4 degrees C, suggesting temperature-sensitive changes in receptor specificity. Scatchard analysis revealed a straight line with a KD of 2.5 nM at 0 degrees C and 4.1 nM at 30 degrees C. Bmax was higher in distal than in proximal colon (30 degrees C, 156 +/- 33 versus 65 +/- 9 fmol/mg protein) and increased by 36% in proximal and 180% in distal colon at 30 degrees C compared to 0 degrees C. DEAE-cellulose chromatography of unactivated receptor demonstrated a single peak eluting at 200-250 mM KCl. Heat, ATP, and gel filtration did not activate the receptor, whereas increasing cytosolic salt concentration to 300 mM KCl, raising the pH to 8, or adding EGTA and EDTA caused increased DNA-cellulose binding and a new peak eluting at 30-80 mM KCl on DEAE-cellulose chromatography. There is a specific aldosterone receptor in colon with increasing number of binding sites from proximal to most distal segments paralleling aldosterone's physiological effects. Absence of receptor activation with heat, gel filtration, or ATP suggests differences between activation of the aldosterone receptor and other steroid hormone receptors.  相似文献   

12.
X-linked Hyp mice have a specific defect in Na(+)-dependent phosphate (Pi) transport at the renal brush border membrane (BBM). In the present study we examined the effect of the Hyp mutation on the molecular size of the Pi transporting unit and on Na(+)-dependent 14C-phosphonoformic (PFA) binding in renal BBM vesicles. By radiation inactivation analysis, we demonstrated that the molecular size of the Na(+)-Pi cotransporter is similar in normal (242 +/- 16 kDa) and Hyp mice (227 +/- 39 kDa). Moreover, while BBM Na(+)-dependent Pi transport is significantly reduced in Hyp mice (249 +/- 54 vs 465 +/- 82 pmol/mg protein/6s), genotype differences in (1) Na(+)-dependent PFA binding (1020 +/- 115 vs 1009 +/- 97 pmol/mg protein/30 min), (2) Pi-displaceable Na(+)-dependent PFA binding (605 +/- 82 vs 624 +/- 65 pmol/mg protein/6s), and (3) phosphate uptake at Na(+)-equilibrium (67 +/- 10 vs 54 +/- 7 pmol/mg protein/6s) are not apparent. The present data demonstrate that the molecular size of the renal BBM Na(+)-Pi cotransporter is normal in Hyp mice and suggest that the number of Na(+)-Pi cotransporters may not be reduced in the mutant strain.  相似文献   

13.
The lactogenic hormone prolactin (PRL) has been known to affect Ca(2+) and electrolyte transport in the intestinal epithelium. In the present study we analyzed ion transport in mouse proximal and distal colon, and acute changes induced by PRL. In the proximal colon, carbachol activated a Ca(2+) dependent Cl(-) secretion that was sensitive to DIDS and NFA. In the distal colon, both ATP and carbachol activated K(+) secretion. Ca(2+) -activated KCl transport in proximal and distal colon was inhibited by PRL (200 ng/ml), while amiloride sensitive Na(+) absorption and cAMP induced Cl(-) secretion remained unaffected. Luminal large conductance Ca(2+) -activated K(+) (BK) channels were largely responsible for Ca(2+) -activated K(+) secretion in the distal colon, and basolateral BK channels supported Ca(2+) -activated Cl(-) secretion in the proximal colon. Ca(2+) chelating by BAPTA-AM attenuated effects of carbachol and abolished effects of PRL. Both inhibition of PI3 kinase with wortmannin and blockage of MAP kinases with SB 203580 or U 0126, interfered with the acute inhibitory effect of PRL on ion transport, while blocking of Jak/Stat kinases with AG 490 was without effects. PRL attenuated the increase in intracellular Ca(2+) that was caused by stimulation of isolated colonic crypts with carbachol. Thus PRL inhibits Ca(2+) dependent Cl(-) and K(+) secretion by interfering with intracellular Ca(2+) signaling and probably by activating PI3 kinase and MAP kinase pathways.  相似文献   

14.
15.
The effect of prolactin (PRL) on ion transport across the rat colon epithelium was investigated using Ussing chamber technique. PRL (1 μg/ml) induced a sustained decrease in short-circuit current (I(sc)) in the distal colon with an EC(50) value of 100 ng/ml and increased I(sc) in the proximal colon with an EC(50) value of 49 ng/ml. In the distal colon, the PRL-induced decrease in I(sc) was not affected by Na(+) channel blocker amiloride or Cl(-) channel blockers, NPPB, DPC, or DIDS, added mucosally. However, the response was inhibited by mucosal application of K(+) channel blockers glibenclamide, quinidine, and chromanol 293B, whereas other K(+) channel blockers, Ba(2+), tetraethylammonium, clotrimazole, and apamin, failed to have effects. The PRL-induced decrease in I(sc) was also inhibited by Na(+)-K(+)-2Cl(-) transporter inhibitor bumetanide, Ba(2+), and chromanol 293B applied serosally. In the transverse and proximal colon, the PRL-induced increase in I(sc) was suppressed by DPC, glibenclamide, and bumetanide, but not by NPPB, DIDS, or amiloride. The PRL-induced changes in I(sc) in both distal and proximal colon were abolished by JAK2 inhibitor AG490, but not BAPTA-AM, the Ca(2+) chelating agent, or phosphatidylinositol 3-kinase inhibitor wortmannin. These results suggest a segment-specific effect of PRL in rat colon, by activation of K(+) secretion in the distal colon and activation of Cl(-) secretion in the transverse and proximal colon. Both PRL actions are mediated by JAK-STAT-dependent pathway, but not phosphatidylinositol 3-kinase pathway or Ca(2+) mobilization. These findings suggest a role of PRL in the regulation of electrolyte transport in mammalian colon.  相似文献   

16.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.  相似文献   

17.
Large amounts of nucleic acids associated with rumen microorganisms are digested in the proximal part of the small intestine of ruminants. We studied how the proximal-distal gradient in nucleic acid digestion is related to activity of Na(+)-nucleoside transporters in brush border membrane vesicles isolated from the proximal and distal small intestine of cows. Two Na(+)-dependent nucleoside transporters with overlapping substrate specificity were shown to be present at the two intestinal sites, one for pyrimidine nucleosides and one for purine nucleosides. Affinity constants (K(m)-values) for both thymidine and guanosine transport were similar at the two intestinal sites, while transport capacity (V(max)) was 2-3 times higher in the proximal than in the distal small intestine. Glucose and alpha-methyl-D-glucoside (0.1 mmol/l or 2 mmol/l) inhibited transport of thymidine and guanosine markedly only in the proximal small intestine. It is concluded that absorption of nucleosides by the two Na(+)-nucleoside transporters reflects the proximal-distal gradient in nucleic acid digestion.  相似文献   

18.
Angiotensin II is a major regulatory peptide for proximal tubule Na(+) reabsorption acting through two distinct receptor subtypes: AT(1) and AT(2). Physiological or pathological roles of AT(2) have been difficult to unravel because angiotensin II can affect Na(+) transport either directly via AT(2) on luminal or peritubular plasma membranes of proximal tubule cells or indirectly via the renal vasculature. Furthermore, separate systemic and intratubular renin-angiotensin systems impart considerable complexity to angiotensin's regulation. A transport-competent, proximal tubule cell model that lacks AT(2) is a potentially useful tool to assess cellular angiotensin II regulation. To this end, AT(2)-receptor-deficient mice were bred with an Immortomouse, which harbors the thermolabile immortalization gene SV40 large-T antigen (Tag), and AT(2)-receptor-deficient [AT(2) (-/-)], Tag heterozygous [Tag (+/-)] F(2) offspring were selected for cell line generation. S1 proximal tubule segments were microdissected, and epithelial cell outgrowth was expanded in culture. Cells that formed confluent, electrically resistive monolayers were selected for cryopreservation, and one isolate was extensively characterized for conductance (2 mS/cm(2)), short-circuit current (Isc; 0.2 microA/cm(2)), and proximal tubule-specific Na3(+) - succinate (DeltaIsc = 0.8 microA/cm(2) at 2 mM succinate) and Na3(+) - phosphate cotransport (DeltaIsc = 3 microA/cm(2) at 1 mM phosphate). Light microscopy showed a uniform, cobblestone-shaped monolayer with prominent cilia and brush borders. AT(2) receptor functionality, as demonstrated by angiotensin II inhibition of ANF-stimulated cGMP synthesis, was absent in AT(2)-deficient cells but prominent in wild-type cells. This transport competent cell line in conjunction with corresponding wild type and AT(1)-deficient lines should help explain angiotensin II signaling relevant to Na(+) transport.  相似文献   

19.
Extracellular ATP regulates a variety of functions in epithelial tissues by activating the membrane P2-receptor. The purpose of this study was to investigate the autocrine/paracrine regulation by luminal ATP of electrogenic amiloride-sensitive Na(+) absorption in the distal colon from guinea pigs treated with aldosterone by measuring the amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux in vitro with the Ussing chamber technique. ATP added to the luminal side inhibited the amiloride-sensitive I(sc) and (22)Na(+) absorption to a similar degree. The concentration dependence of the inhibitory effect of ATP on amiloride-sensitive I(sc) had an IC(50) value of 20-30 microM, with the maximum inhibition being approximately 50%. The effects of different nucleotides and of a nucleoside were also studied, the order of potency being ATP = UTP > ADP > adenosine. The effects of ATP were slightly, but significantly, reduced in the presence of suramin in the luminal solution. The inhibitory effect of luminal ATP was more potent in the absence of both Mg2+ and Ca2+ from the luminal solution. Pretreatment of the tissue with ionomycin or thapsigargin in the absence of serosal Ca2+ did not affect the percent inhibition of amiloride-sensitive I(sc) induced by ATP. Mechanical perturbation with a hypotonic luminal solution caused a reduction in amiloride-sensitive I(sc), this effect being prevented by the presence of hexokinase, an ATP-scavenging enzyme. These results suggest that ATP released into the luminal side by hypotonic stimulation could exert an inhibitory effect on the electrogenic Na(+) absorption. This effect was probably mediated by a P2Y(2) receptor on the apical membrane of colonic epithelial cells, and a change in the intracellular Ca2+ concentration may not be necessary for this process.  相似文献   

20.
L-Glutamine transport into porcine jejunal enterocyte brush border membrane vesicles was studied. Uptake was mediated by a Na(+)-dependent and a Na(+)-independent pathway as well as by diffusion. The initial rates of glutamine uptake over a range of concentrations is both Na(+)-gradient and Na(+)-free conditions were analyzed and kinetic parameters were obtained. Na(+)-dependent glutamine transport had a K(m) of 0.77 +/- 0.16 mM and a Jmax of 70.7 +/- 5.8 pmol mg protein-1 s-1; Na(+)-independent glutamine transport had a K(m) of 3.55 +/- 0.78 mM and a Jmax of 55.1 +/- 6.6 pmol mg protein-1 s-1. The non-saturable component measured with HgCl2-poisoned brush border membrane vesicles in the Na(+)-free condition contained passive diffusion and non-specific membrane binding and was defined to be apparent glutamine diffusion and the glutamine permeability coefficient (Kdiff) was estimated to be Kdiff = 3.78 +/- 0.06 pmol 1 mg protein-1 mmol-1 s-1. Results of inhibition experiments showed that Na(+)-dependent glutamine uptake occurred primarily through the brush border system-B degree transporters, whereas Na(+)-independent glutamine uptake occurred via the system-L transporters. Furthermore, the kinetics of L-leucine and L-cysteine inhibition of L-glutamine uptake demonstrated that neutral amino acids sharing the same brush border transporters can effectively inhibit each other in their transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号