首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1,3-Butadiene and chloroprene are multisite carcinogens in B6C3F1 mice with the strongest tumor response being the induction of lung neoplasms in females. Incidence of brain tumors in mice exposed to 1,3-butadiene was equivocal. This article reviews the efforts of our laboratory and others to uncover the mechanisms of butadiene and chloroprene induced lung and brain tumor responses in the B6C3F1 mouse. The formation of lung tumors by these chemicals involved mutations in the K-ras cancer gene and loss of heterozygosity in the region of K-ras on distal chromosome 6, while alterations in p53 and p16 were implicated in brain tumorigenesis.  相似文献   

2.
Chloroprene (2-chloro-1,3-butadiene, 1) is oxidised by cytochrome P450 enzymes in mammalian liver microsomes to several metabolites, some of which are reactive towards DNA and are mutagenic. Much less of the metabolite (1-chloroethenyl)oxirane (2a/2b) was formed by human liver microsomes compared with microsomes from Sprague-Dawley rats and B6C3F1 mice. Epoxide (2a/2b) was a substrate for mammalian microsomal epoxide hydrolases, which showed preferential hydrolysis of the (S)-enantiomer (2b). The metabolite 2-chloro-2-ethenyloxirane (3a/3b) was rapidly hydrolysed to 1-hydroxybut-3-en-2-one (4) and in competing processes rearranged to 1-chlorobut-3-en-2-one (5) and 2-chlorobut-3-en-1-al (6). The latter compound isomerised to (Z)-2-chlorobut-2-en-1-al (7). In microsomal preparations from human, rat and mouse liver, compounds 4, 5 and 7 were conjugated by glutathione both in the absence and presence of glutathione transferases. There was no evidence for the formation of a chloroprene diepoxide metabolite in any of the microsomal systems. The major adducts from the reaction of (1-chloroethenyl)oxirane (2a/2b) with calf thymus DNA were identified as N7-(3-chloro-2-hydroxy-3-buten-1-yl)-guanine (20) and N3-(3-chloro-2-hydroxy-3-buten-1-yl)-2'-deoxyuridine (23), with the latter being derived by alkylation at N-3 of 2'-deoxycytidine, followed by deamination. Adducts in DNA were identified by comparison with those derived from individual deoxyribonucleosides. The metabolite (Z)-2-chlorobut-2-en-1-al (7) formed principally two adducts with 2'-deoxyadenosine which were identified as a pair of diastereoisomers of 3-(2'-deoxy-beta-d-ribofuranosyl)-7-(1-hydroxyethyl)-3H-imidazo[2,1-i]purine (25). The chlorine atom of chloroprene thus leads to different intoxication and detoxication profiles compared with those for butadiene and isoprene. The results infer that in vivo oxidations of chloroprene catalysed by cytochrome P450 are more important in rodents, whereas hydrolytic processes catalysed by epoxide hydrolases are more pronounced in humans. The reactivity of chloroprene metabolites towards DNA is important for the toxicology of chloroprene, especially when detoxication is incomplete.  相似文献   

3.
The mutagenicity of vinyl chloride, vinylidene chloride (1,1-dichloroethylene) and chloroprene (2-chloro-1,3-butadiene) was tested in V79 Chinese hamster cells in the presence of a 15 000 x g liver supernatant from phenobarbitone-pre-treated rats and mice. Mutations in terms of 8-azaguanine and ouabain resistance were induced in a dose-related fasion by exposure to vapour of vinyl chloride in the presence of liver supernatant from phenobarbitone-pretreated rats. Vapours of vinylidene chloride and chloroprene induced a dose-related toxicity in the presence of liver supernatant from phenobarbitone-retreated rats, but these two compounds were not mutagenic in V79 Chinese hamster cells under the present assay conditions. The results are discussed with regard to the metabolic activation of the compounds and to the correlation with their carcinogenicity in man and experimental animals.  相似文献   

4.
Genetic susceptibility, biomarker respones, and cancer   总被引:1,自引:0,他引:1  
Norppa H 《Mutation research》2003,544(2-3):339-348
A large number of studies have reported associations between polymorphisms of xenobiotic-metabolizing enzymes (XMEs) and various cancers. However, the carcinogenic exposures behind such findings have usually been unclear. Information on susceptibility to specific carcinogens could better be obtained by examining situations where the exposure and the endpoint studied are nearer in time, i.e., by studying biomarkers of carcinogen exposure and early (genotoxic) effect in exposed humans. For example, analyses of DNA adducts and cytogenetic endpoints have indicated an increased susceptibility of glutathione S-transferase M1 (GSTM1) null genotype to genotoxicity of tobacco smoking, supporting the view that the associations of the GSTM1 null genotype with bladder and lung cancer are partly related to smoking. In vitro genotoxicity studies with human cells offer an experimental tool that can be used, within the limits of the cell systems, to predict individual sensitivity and genotype-carcinogen interactions. In vitro sensitivity to the genotoxicity of 1,2:3,4-diepoxybutane, an epoxide metabolite of 1,3-butadiene has clearly been shown to depend on GSTT1 genotype, which has also been implicated to modify, along with GSTM1 genotype, the in vitro genotoxicity of 1,2-epoxy-3-butene, another epoxide metabolite of 1,3-butadiene. These genotypes appear to modulate the excretion of 1,3-butadiene-specific mercapturic acids, and influence genotoxicity biomarker levels in 1,3-butadiene-exposed workers. The excretion of specific mercapturic acids (PHEMA) in workers exposed to styrene has clearly been shown to depend on GSTM1 genotype, and GSTT1 genotype seems to modulate the excretion of one PHEMA diastereoisomer. These genotypes have also been implicated to modulate the in vitro genotoxicity of styrene. In general, the genetic polymorphisms potentially important for biomarker response largely depend on the exposing agent, biological material examined, and ethnicity of the population under study. Individual exposure level may vary a lot, and a reliable estimate of the exposure is essential for correct interpretation of genotype-exposure interaction. Besides XME polymorphisms, any polymorphisms that affect cellular response to DNA damage could, in principle, modify individual sensitivity to genotoxins. For instance, those concerning DNA repair proteins are presently being studied by many laboratories.  相似文献   

5.
PBPK models in risk assessment--A focus on chloroprene   总被引:2,自引:0,他引:2  
Mathematical models are increasingly being used to simulate events in the exposure-response continuum, and to support quantitative predictions of risks to human health. Physiologically based pharmacokinetic (PBPK) models address that portion of the continuum from an external chemical exposure to an internal dose at a target site. Essential data needed to develop a PBPK model include values of key physiological parameters (e.g., tissue volumes, blood flow rates) and chemical specific parameters (rate of chemical absorption, distribution, metabolism, and elimination) for the species of interest. PBPK models are commonly used to: (1) predict concentrations of an internal dose over time at a target site following external exposure via different routes and/or durations; (2) predict human internal concentration at a target site based on animal data by accounting for toxicokinetic and physiological differences; and (3) estimate variability in the internal dose within a human population resulting from differences in individual pharmacokinetics. Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, P.M. Hinderliter, Kinetic modeling of beta-chloroprene metabolism. I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans, Toxicol. Sci. 79 (1) (2004) 18-27; M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37] developed a PBPK model for chloroprene (2-chloro-1,3-butadiene; CD) that simulates chloroprene disposition in rats, mice, hamsters, or humans following an inhalation exposure. Values for the CD-PBPK model metabolic parameters were obtained from in vitro studies, and model simulations compared to data from in vivo gas uptake studies in rats, hamsters, and mice. The model estimate for total amount of metabolite in lung correlated better with rodent tumor incidence than did the external dose. Based on this PBPK model analytical approach, Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37; M.W. Himmelstein, R. Leonard, R. Valentine, Kinetic modeling of beta-chloroprene metabolism: default and physiologically-based modeling approaches for cancer dose response, in: IISRP Symposium on Evaluation of Butadiene & Chloroprene Health Effects, September 21, 2005, TBD--reference in this proceedings issue of Chemical-Biological Interactions] propose that observed species differences in the lung tumor dose-response result from differences in CD metabolic rates. The CD-PBPK model has not yet been submitted to EPA for use in developing the IRIS assessment for chloroprene, but is sufficiently developed to be considered. The process that EPA uses to evaluate PBPK models is discussed, as well as potential applications for the CD-PBPK model in an IRIS assessment.  相似文献   

6.
Sister-chromatid exchanges (SCEs) were induced in human lymphocytes by 1,3-butadiene and its epoxides 3,4-epoxy-1-butene and 1,2:3,4-diepoxybutane. After a pulse treatment of 2 h, 1,3-butadiene produced a weak but reproducible increase in SCEs both with and without S9 mix. The response was similar in cultures of whole blood and of isolated lymphocytes. The 2 epoxide metabolites of butadiene, studied in whole-blood lymphocyte cultures without exogenous metabolic activation, were highly active SCE inducers. The lowest effective concentrations of butadiene, monoepoxybutene, and diepoxybutane were 2000 microM, 25 microM and 0.5 microM, respectively. A slight but dose-dependent increase in SCEs was also observed without an exogenous metabolic system after a 48-h treatment with 1,3-butadiene. Already the lowest concentration tested (500 microM) was effective. Again, the response was similar in cultures of whole blood and isolated lymphocytes, suggesting that the lymphocytes are capable of metabolically activating 1,3-butadiene.  相似文献   

7.
Blood and urine were obtained from male Sprague-Dawley rats and B6C3F1 mice exposed to either a single 6 h or multiple daily (5 x 6 h) nose-only doses of 1,3-[2,3- (14)C]-butadiene at atmospheric concentrations of 1, 5 or 20 ppM. Globin was isolated from erythrocytes of exposed animals and analyzed for total radioactivity and also for N-(1,2,3-trihydroxybut-4-yl)-valine adducts. The modified Edman degradation procedure coupled with GC-MS was used for the adduct analysis. Linear relationships were observed between the exposures to 1,3-[2,3-(14)C]-butadiene and the total radioactivity measured in globin and the level of trihydroxybutyl valine adducts in globin. A greater level of radioactivity (ca. 1.3-fold) was found in rat globin compared with mouse globin. When analyzed for specific amino acid adducts, higher levels of trihydroxybutyl valine adducts were found in mouse globin compared with rat globin. Average levels of trihydroxybutyl valine adduct measured in globin from rats and mice exposed for 5 x 6 h at 1, 5 and 20 ppM 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 80, 179, 512 pM/g globin and for mice: 143, 351, 1100 pM/g globin. The profiles of urinary metabolites for rats and mice exposed at the different concentrations of butadiene were obtained by reverse phase HPLC analysis on urine collected 24 h after the start of exposure and were compared with results of a previous similar study carried out for 6 h at 200 ppM butadiene. Whilst there were qualitative and quantitative differences between the profiles for rats and mice, the major metabolites detected in both cases were those representing products of epoxide hydrolase mediated hydrolysis and glutathione (GSH) conjugation of the metabolically formed 1,2-epoxy-3-butene. These were 4-(N-acetyl-l-cysteine-S-yl)-1,2-dihydroxy butane and (R)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(S)-hydroxybut-3-ene, 1-(N-acetyl-l-cystein-S-yl)-2-(R)-hydroxybut-3-ene, (S)-2-(N-acetyl-l-cystein-S-yl)-1-hydroxybut-3-ene, respectively. The former pathway showed a greater predominance in the rat. The profiles of metabolites were similar at exposure concentration in the range 1-20 ppM. There were however some subtle differences compared with results of exposure to the higher 200 ppM concentrations. Overall the results provide the basis for cross species comparison of low exposures in the range of occupational exposures, with the wealth of data available from high exposure studies.  相似文献   

8.
In order to evaluate possible tumorigenic effects of a 20 kHz intermediate frequency triangular magnetic field (IF), a frequency emitted from TV and PC monitors at 6.25 microT rms, which is the regulated exposure limit of magnetic field for the public in Korea, mammary tumors were produced in female Sprague-Dawley rats by oral intubation of dimethylbenz(a)anthracene (DMBA), lung tumors in ICR mice by scapular region injection of benzo(a)pyrene (BP), and skin tumors in female ICR mice by topical application of DMBA and tetradecanoylphorbol ester (TPA). IF was applied 8 h/day for 14 weeks beginning the day after DMBA treatment for mammary tumor experiment, for 6 weeks after weaning for lung tumor, and for 20 weeks beginning 1 week after DMBA application for skin tumor experiment. For skin tumors, TPA was applied once a week for 19 weeks. Results showed no significant differences in tumor incidence, mean tumor number and volume, and histological patterns between IF magnetic-field exposed and sham control rats in the above three tumor models. Therefore, we conclude that within the limitation or number of animals and the experimental conditions, 20 kHz IF triangular magnetic field exposure of 6.25 microT does not appear to be a strong co-tumorigenic agent in the chosen murine mammary, lung and skin models.  相似文献   

9.
Controversy surrounds the assessments of carcinogenic potential associated with human exposure to trichloroethylene (TCE). The American Conference of Governmental Industrial Hygienists states that TCE is “not suspected to be a human carcinogen.” In contrast, the International Agency for Research on Cancer has classified TCE as a probable human carcinogen, based primarily on the results of animal toxicity studies. Chronic high-dose TCE exposures cause hepatic and pulmonary tumors in mice and renal tumors in rats. Human epidemiology studies, however, do not support a causal association between exposure to TCE at environmentally relevant levels and cancers of the lung, liver, or kidney. The apparent discrepancy between the animal data and the human data can be explained by (1) differences in TCE exposure levels between laboratory animals and humans, (2) species-specific differences in TCE metabolism, and (3) other species-specific mechanisms involved in the development of cancer in rodents. This paper critically assesses the experimental and epidemiological data relevant to the carcinogenic potential of TCE. From the analysis, we conclude that TCE exposure at concentrations likely to be encountered in most environmental media is not likely to cause liver, lung, or kidney cancers in humans.  相似文献   

10.
The 2005 International Symposium on the evaluation of butadiene and chloroprene health risks provided the opportunity to consider the past, present and future state of research issues for 1,3-butadiene. Considerable advancements have been made in our knowledge of exposure, metabolism, biomarkers of exposure and effect, and epidemiology. Despite this, uncertainties remain which will impact the human health risk assessment for current worker and environmental exposures. This paper reviews key aspects of recent studies and the role that biomarkers of internal dosimetry can play in addressing low to high exposure, gender, and cross-species differences in butadiene toxicity and metabolism. Considerable information is now available on the detection and quantification of protein adducts formed from the mono-, di- and dihydroxy-epoxide metabolites of butadiene. The diepoxide metabolite appears to play a key role in mutagenesis. Species differences in production of this critical metabolite are reflected by the diepoxybutane-specific hemoglobin adduct, pry-Val. To date, the pry-Val adduct has not been quantifiable in human blood samples from workers with cumulative occupational exposures up to 6.3 ppm-weeks; whereas, the pry-Val was quantifiable in the blood of mice and rats with similar cumulative exposures. Levels in mice were much higher than in rats. Further improvements in analytical sensitivity for the pyr-Val adduct are on the horizon. Epidemiology studies are also described and ongoing efforts promise to help bridge our understanding of past and future risks.  相似文献   

11.
1,3-Butadiene is on the list of Substances Requiring Priority Action published by the Central Environmental Council of Japan in 1996. Emission of 1,3-butadiene has been controlled by a voluntary reduction program since 1997. Although the industrial emission of 1,3-butadiene in Japan has decreased in recent years, primarily due to a voluntary industrial emissions reduction program, the risks of exposure to it remain largely unknown. We assessed the risks and consequences of exposure to 1,3-butadiene on human health. A remarkable advantage of our risk assessment approach is the detailed assessment of exposure. Previously, we developed two different models that can be applied for the assessment of exposure: the first, the AIST-ADMER model estimates regional concentration distributions, whereas the second, the METI-LIS model estimates concentration distributions in the vicinity of factories. Both models were used for the assessment of exposure to 1,3-butadiene. Using exposure concentration and carcinogenic potency determined and reported by Environment Canada and Health Canada, we evaluated the excess lifetime cancer risk for persons exposed to 1,3-butadiene over the course of a lifetime. The results suggested that the majority of the population in Japan has an excess lifetime cancer risk of less than 10(-5), whereas a small number of people living close to industrial sources had a risk of greater than 10(-5). The results of the present assessment also showed that 1,3-butadiene in the general environment originates primarily from automobile emissions, such that a countermeasure of reducing emissions from cars is expected to be effective at reducing the total cancer risk among Japanese. On the other hand, individual risks among a population living in the vicinity of certain industrial sources were found to be significantly higher than those of the population living elsewhere, such that a reduction in emissions from a small number of specific industrial sources should be realized in order to reduce the high level of individual risk. Based on the results of our assessment, the Industrial Structure Council of the Ministry of Economy, Trade and Industry (METI) in Japan decided to announce that the voluntary reduction program had been successful, and that emissions reductions should no longer be targeted across all industries in general, but instead that such reductions should be carried out in a small number of selected factories that emit excessively large amounts of emissions.  相似文献   

12.
1,3-Butadiene was oxidized by human myeloperoxidase in the absence of KCl to yield butadiene monoxide (BM) and crotonaldehyde (CA), but at KCl concentrations higher than 50 mM, 1-chloro-2-hydroxy-3-butene (CHB) was the major metabolite detected; metabolite formation was dependent on incubation time, pH, KCl, 1,3-butadiene, and H2O2 concentrations. The data are best explained by 1,3-butadiene being oxidized by myeloperoxidase by two different mechanisms. First, oxygen transfer from the hemoprotein would occur to either C-1 or C-4 of 1,3-butadiene to form an intermediate which may cyclize to form BM or undergo a hydrogen shift to form 3-butenal, an unstable precursor of CA. Further evidence for this mechanism was provided by the inability to detect methyl vinyl ketone, a possible product of an oxygen transfer reaction to C-2 or C-3 of 1,3-butadiene, and by the finding that CA was not simply a decomposition product of BM under assay conditions. In the second mechanism, however, chloride ion is oxidized by myeloperoxidase to HOCl which reacts with 1,3-butadiene to yield CHB. Further evidence for this mechanism was provided by the finding that CHB was readily formed when 1,3-butadiene was added to the filtrate of a myeloperoxidase/H2O2/KCl incubation and when 1,3-butadiene was allowed to react with authentic HOCl. In addition, CHB was not detected when BM or CA was incubated with myeloperoxidase, H2O2, and KCl for up to 60 min, or when 1,3-butadiene and KCl were incubated with chloroperoxidase and H2O2 or with mouse liver microsomes and NADPH, enzyme systems which catalyze 1,3-butadiene oxidation to BM and CA, but unlike myeloperoxidase, do not catalyze chloride ion oxidation to HOCl. These results provide clear evidence for novel olefinic oxidation reactions by myeloperoxidase.  相似文献   

13.
R G Bell 《Federation proceedings》1978,37(12):2599-2604
Vitamin K is primarily located in hepatic microsomes, where the vitamin K-dependent carboxylation in prothrombin synthesis occurs. Recent evidence supports the idea that the carboxylation is linked to the metabolism of the vitamin--specifically the cyclic interconversion of vitamin K and vitamin K epoxide. The primary site of action of coumarin and indandione anticoagulants appears to be an inhibition of the epoxide-to-vitamin K conversion in this cycle. There is a correlation between the inhibition of prothrombin synthesis and the regeneration of vitamin K from the epoxide by anticoagulants. In hamsters and warfarin-resistant rats prothrombin synthesis and the epoxide-K conversion are less sensitive to warfarin than in the normal rat. The epoxide-K conversion is impaired in resistant rats, which may explain their high vitamin K requirement. There is also a correlation between vitamin K epoxidation and vitamin K-dependent carboxylation, but the apparent link may be because vitamin K hydroquinone is an intermediate in the formation of the epoxide and also the active form in carboxylation. The vitamin K-epoxide cycle is found in extrahepatic tissues such as kidney, spleen, and lung and is inhibited by warfarin.  相似文献   

14.
Incense smoke is a potential hazard to human health due to various airborne carcinogens emitted from incense burning. This study aimed to evaluate the potential health effects of exposure to benzene, 1,3-butadiene, and polycyclic aromatic hydrocarbons (PAHs) emitted from incense smoke in temple workers. Exposure and health risks were assessed through the measurement of ambient exposure as well as through the use of biomarkers of exposure and early biological effects. Ambient air measurement showed that incense burning generates significantly higher levels of airborne benzene (P<0.01), 1,3-butadiene (P<0.001) and total PAHs (P<0.01) inside the temples, compared to those of the control workplace. Temple workers were exposed to relatively high levels of benzene (45.90 microg/m(3)) 1,3-butadiene (11.29 microg/m(3)) and PAHs (19.56 ng/m(3)), which were significantly higher than those of control workers (P<0.001). The most abundant PAHs were chrysene, B[ghi]P, B[a]P, B[a]F and fluoranthene. Concentrations of B[a]P and B[a]P equivalents in air samples to which temple workers were exposed were 63- and 16-fold, higher, respectively, than those to which control subjects were exposed (P<0.001). Biomarkers of exposure to benzene (blood benzene and the urinary metabolites trans,trans-muconic acid and S-phenylmercapturic acid), 1,3-butadiene (urinary monohydroxy-butenyl mercapturic acid) and PAHs (1-hydroxypyrene) were all significantly higher in temple workers than those in control workers. DNA damage and DNA repair capacity were measured as biomarkers of early biological effects. Temple workers had a significant increase in DNA damage observed as a 2-fold increase in the levels of leukocyte 8-hydroxy-2'-deoxguanosine (8-OHdG) and DNA strand breaks (P<0.001). A significant reduction of DNA repair capacity in temple workers determined by the radiation challenge assay was also observed. These results indicate that exposure to carcinogens emitted from incense burning may increase health risk for the development of cancer in temple workers.  相似文献   

15.
The US Environmental Protection Agency recently released its new guidelines for carcinogen risk assessment together with supplemental guidance for assessing susceptibility from early-life exposure to carcinogens. In particular, these guidelines encourage the use of mechanistic data in support of dose-response characterization at doses below those at which an increase in tumor frequency over background levels might be detected. In this context of the utility of mechanistic data for human cancer risk assessment, the International Life Sciences Institute (ILSI) has developed a human relevance framework (HRF) that can be used to assess the plausibility of a mode of action (MoA) described for animal models operating in humans. The MoA is described as a sequence of key events and processes that result in an adverse outcome. A key event is a measurable precursor step that is in itself a necessary element of the MoA or is a bioindicator for such an element. A number of cellular and molecular perturbations have been identified as key events whereby DNA-reactive chemicals can produce tumors. These include DNA adducts in target tissues, gene mutations and/or chromosomal alterations in target tissues and enhanced cell proliferation in target tissues. This type of data integration approach to quantitative cancer risk assessment can be applied to 1,3-butadiene, for example, using data on biomarkers in exposed Czech workers [1]. For this study, an extensive range of biomarkers of exposure and response was assessed, including: polymorphisms in metabolizing enzymes; urinary concentrations of several metabolites of 1,3-butadiene; hemoglobin adducts; HPRT mutations in T-lymphocytes; chromosomal aberrations by FISH and conventional staining procedures; sister chromatid exchanges. Exposure levels were monitored in a comprehensive fashion. For risk assessment purposes, these data need to be considered in the context of how they inform the MoA for leukemia, the tumor type reported to be increased in synthetic rubber workers exposed to 1,3-butadiene. Also, for the HRF it is necessary to establish key events for a MoA in rodents for the induction of tumors by 1,3-butadiene. There is clearly a species difference in sensitivity to tumor induction, with mice being much more sensitive than rats; key events need to explain this difference. For butadiene, the MoA is DNA-reactivity and subsequent mutagenicity and so following the EPA's cancer guidelines, a linear extrapolation is used from the point of departure (POD), unless additional data support a non-linear extrapolation. For the present case, the human bioindicator data are not informative as far as dose-response characterization is concerned. Mouse chromosome aberration data for in vivo exposures might be used for establishing a POD, with linear extrapolation from this POD. The available cytogenetic data from rodent studies appear to be sufficiently extensive and consistent for this to be a viable approach. This approach of using MoA and key events to establish the human relevance can lead to the development of specific informative bioindicators of response that can be used as surrogates to predict the shape of the tumor dose response curve at low doses. Truly informative predictors of tumor responses should be able to provide estimates of human tumor frequencies at low, environmental exposures to 1,3-butadiene.  相似文献   

16.
We have investigated the effect of glutathione peroxidase (GSH-Px) and mammalian erythrocytes (RBCs) on spontaneous and diepoxybutane (DEB)-induced sister chromatid exchange (SCE) in primary Big Blue(R) mouse (BBM1) and Big Blue(R) rat (BBR1) fibroblasts. DEB is the putative carcinogenic metabolite of 1,3-butadiene (BD) for which inhalation exposure yields a high rate of malignancies in mice but not in rats. BD is metabolized differently in mice and rats, producing much higher levels of DEB in mice than in rats, which may partly explain the different carcinogenic responses. However, other factors may contribute to the observed differences in the rodent carcinogenic response to BD. DEB is a highly reactive compound. Upon epoxide hydrolysis, DEB can covalently bind to DNA bases. Likewise, DEB generates reactive oxygen species that, in turn, can either damage DNA or produce H(2)O(2). Reduced glutathione (GSH) is known to play a role in the metabolism and detoxification of DEB; and GSH is reduced by GSH-Px in the presence of H(2)O(2). GSH-Px is a constitutive enzyme that is found at high concentrations in mammalian RBCs. Therefore, we were interested in examining the role of RBCs and GSH-Px on DEB-induced SCE in rat and mouse cells for detection of possible differences in the species response. Transgenic BBM1 and BBR1 fibroblasts were treated with either 0, 2 or 4 microM DEB plus 0, 2 or 20 units of GSH-Px with and without 2x10(8) species-specific RBCs. DEB effectively induced SCEs in both rat and mouse cells. The relative induction of SCEs in both cell types was comparable. Both GSH-Px and RBCs alone and in combination were effective in significantly reducing DEB-induced SCEs in both mouse and rat fibroblasts, although there was more variability in the SCE response in rat cells. The present study suggests that GSH-Px may be important in the detoxification of DEB-induced DNA damage that results in the formation of SCEs.  相似文献   

17.
Styrene and 1,3-butadiene are important intermediates used extensively in the plastics industry. They are metabolized mainly through cytochrome P450-mediated oxidation to the corresponding epoxides, which are subsequently converted to diols by epoxide hydrolase or through spontaneous hydration. The resulting styrene glycol and 3-butene-1,2-diol have been suggested as biomarkers of exposure to styrene and 1,3-butadiene, respectively. Unfortunately, poor ionization of the diols within electrospray mass spectrometers becomes an obstacle to the detection of the two diols by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS). We developed an LC/ESI-MS approach to analyze styrene glycol and 3-butene-1,2-diol by means of derivatization with 2-bromopyridine-5-boronic acid (BPBA), which not only dramatically increases the sensitivity of diol detection but also facilitates the identification of the diols. The analytical approach developed was simple, quick, and convincing without the need for complicated chemical derivatization. To evaluate the feasibility of BPBA as a derivatizing reagent of diols, we investigated the impact of diol configuration on the affinity of a selection of diols to BPBA using the established LC/ESI-MS approach. We found that both cis and trans diols can be derivatized by BPBA. In conclusion, BPBA may be used as a general derivatizing reagent for the detection of vicinal diols by LC/MS.  相似文献   

18.
The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors.  相似文献   

19.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

20.
Sprague-Dawley rats were fed eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) ethyl esters at the 2% level for 3 weeks to clarify their effects on immune functions. In the rats fed EPA or DHA, serum cholesterol, triglyceride, and phospholipid (PL) levels were significantly lower than those in the rats fed safflower oil. In PL fractions of serum, liver, lung, splenocytes, and peritoneal exudate cells (PEC), increases in linoleic and dihomo-gamma-linolenic acid contents and a decrease in arachidonic acid (AA) content were observed in the rats fed EPA or DHA. In addition, the EPA content increased in the rats fed EPA and DHA. In the rats fed EPA or DHA, a decrease of LTB4 productivity and an increase of LTBs productivity were observed in the PEC, in response to the treatment with 5 microM calcium ionophore A23187 for 20 min. The changes in leukotriene production were more marked in EPA-fed rats than in DHA-fed rats. These results suggest that dietary EPA affects lipid metabolism and leukotriene synthesis more strongly than DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号