首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA polymerase beta   总被引:6,自引:0,他引:6  
Mammalian DNA polymerase beta(beta-pol) is a single polypeptide chain enzyme of 39kDa. beta-pol has enzymatic activities appropriate for roles in base excision repair and other DNA metabolism events involving gap-filling DNA synthesis. Many crystal structures of beta-pol complexed with dNTP and DNA substrates have been solved, and mouse fibroblast cell lines deleted in the beta-pol gene have been examined. These approaches have enhanced our understanding of structural and functional aspects of beta-pol's role in protecting genomic DNA.  相似文献   

2.
3.
Alterations in DNA repair lead to genomic instability and higher risk of cancer. DNA base excision repair (BER) corrects damaged bases, apurinic sites, and single-strand DNA breaks. Here, a regulatory mechanism for DNA polymerase beta (Pol beta) is described. Pol beta was found to form a complex with the protein arginine methyltransferase 6 (PRMT6) and was specifically methylated in vitro and in vivo. Methylation of Pol beta by PRMT6 strongly stimulated DNA polymerase activity by enhancing DNA binding and processivity, while single nucleotide insertion and dRP-lyase activity were not affected. Two residues, R83 and R152, were identified in Pol beta as the sites of methylation by PRMT6. Genetic complementation of Pol beta knockout cells with R83/152K mutant revealed the importance of these residues for the cellular resistance to DNA alkylating agent. Based on our findings, we propose that PRMT6 plays a role as a regulator of BER.  相似文献   

4.
Beard WA  Wilson SH 《Mutation research》2000,460(3-4):231-244
DNA polymerase beta, the smallest eukaryotic DNA polymerase, is designed to synthesize DNA in short DNA gaps during DNA repair. It is composed of two specialized domains that contribute essential enzymatic activities to base excision repair (BER). Its amino-terminal domain possesses a lyase activity necessary to remove the 5'-deoxyribose phosphate (dRP) intermediate generated during BER. Removal of the dRP moiety is often the rate-limiting step during BER. Failure to remove this group may initiate alternate BER pathways. The larger polymerase domain has nucleotidyl transferase activity. This domain has a modular organization with sub-domains that bind duplex DNA, catalytic metals, and the correct nucleoside triphosphate in a template-dependent manner. X-ray crystal structures of DNA polymerase beta, with and without bound substrates, has inferred that domain, sub-domain, and substrate conformational changes occur upon ligand binding. Many of these conformational changes are distinct from those observed in structures of other DNA polymerases. This review will examine the structural aspects of DNA polymerase beta that facilitate its role in BER.  相似文献   

5.
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.  相似文献   

6.
7.
Mammalian DNA polymerase beta is the smallest known eukaryotic polymerase and is expressed as an active protein in Escherichia coli harboring a plasmid containing its cDNA. Since some catalytic functions of DNA polymerase beta and E. coli DNA polymerase I are similar, we wished to determine if DNA polymerase beta could substitute for DNA polymerase I in bacteria. We found that the expression of mammalian DNA polymerase beta in E. coli restored growth in a DNA polymerase I-defective bacterial mutant. Sucrose density gradient analysis revealed that DNA polymerase beta complements the replication defect in the mutant by increasing the rate of joining of Okazaki fragments. These findings demonstrate that DNA polymerase beta, believed to function in DNA repair in mammalian cells, can also function in DNA replication. Moreover, this complementation system will permit study of the in vivo function of altered species of DNA polymerase beta, an analysis currently precluded by the difficulty in isolating mutants in mammalian cells.  相似文献   

8.
DNA polymerases play a central role in the mechanisms of DNA replication and repair. Here, we report mechanisms of the beta-polymerase catalyzed phosphoryl transfer reactions corresponding to correct and incorrect nucleotide incorporations in the DNA. Based on energy minimizations, molecular dynamics simulations, and free energy calculations of solvated ternary complexes of pol beta and by employing a mixed quantum mechanics molecular mechanics Hamiltonian, we have uncovered the identities of transient intermediates in the phosphoryl transfer pathways. Our study has revealed that an intriguing Grotthuss hopping mechanism of proton transfer involving water and three conserved aspartate residues in pol beta's active site mediates the phosphoryl transfer in the correct as well as misincorporation of nucleotides. The significance of this catalytic step in serving as a kinetic check point of polymerase fidelity may be unique to DNA polymerase beta, and is discussed in relation to other known mechanisms of DNA polymerases.  相似文献   

9.
10.
J B Sweasy  M Chen    L A Loeb 《Journal of bacteriology》1995,177(10):2923-2925
We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant in the presence of mammalian DNA polymerase beta. Our results suggest that mammalian DNA polymerase beta can substitute for E. coli DNA polymerase I by initiating DNA replication of this plasmid from the 3' OH terminus of the RNA-DNA hybrid at the origin of replication.  相似文献   

11.
Steady-state kinetics of mouse DNA polymerase beta.   总被引:1,自引:0,他引:1  
K Tanabe  E W Bohn  S H Wilson 《Biochemistry》1979,18(15):3401-3406
DNA polymerase beta from mouse myeloma has been purified to near homogeneity, and its properties have been examined. The enzyme did not catalyze a detectable level of dNTP turnover, pyrophosphate exchange, pyrophosphorolysis, 3'-exonuclease degradation, or 5'-exonuclease degradation. Steady-state kinetic studies point to an ordered bibi mechanism for the polymerization reaction. Metal activation, which is required for polymerization, did not alter the Km for either the dNTP or the template--primer.  相似文献   

12.
Covalently closed circular Col E1 DNA was ultraviolet-irradiated with a dose of 60 J/m2, thus introducing about 3.2 pyrimidine dimers per DNA molecule. Treatment of irradiated Col E1 DNA with Micrococcus luteus correndonuclease resulted, in the vicinity of pyrimidine dimers, in an average of 3.3 incisions per DNA molecule, and converted DNA to the open circular form. Incised Col E1 DNA stimulated no reaction with calf thymus DNA polymerase alpha but was recognized as a template by DNA polymerase beta. The latter enzyme incorporated about 1.6 molecules of dTMP (corresponding to 6 molecules od dNMP) per one correndonuclease incision. The length of the DNA polymerase beta product was comparable to the anticipated length of the DNA region within which the hydrogen bonds were disrupted owing to dimer formation. The enzyme required Mg(2)=nd four dNTPs for reaction and was resistant to N-ethylmaleimide or p-mercuribenzoate. The average numbers of deoxynucleotides incorporated per one DNAase I incision or per one nonspecific break, measured in control samples, were equal, amounting to 0.3 dTMP molecule. This value corresponded to 1.2 dNMP molecule; in our opinion, this reflects contaminating nuclease activity of the system used. The present results testify to the ability of DNA polymerase beta to repair synthesis by the "patch and cut' mechanism.  相似文献   

13.
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells.  相似文献   

14.
The role of DNA polymerase alpha-DNA primase complex and DNA polymerase beta in DNA replication and ultraviolet-induced DNA repair synthesis has been analyzed in mouse spermatogenesis. Autoradiographic experiments with germ cells in culture, indicating an involvement of DNA polymerase alpha and/or delta in DNA replication, and of DNA polymerase beta in DNA repair synthesis, have been confirmed by studying partially purified enzymes. These findings support the idea that, different from other biological systems, in meiotic and post meiotic male mouse germ cells DNA polymerase beta is the main DNA polymerase form needed for DNA repair.  相似文献   

15.
16.
Bioassay-guided fractionation of extracts prepared from Couepia polyandra and Edgeworthia gardneri resulted in the isolation of the DNA polymerase beta (pol beta) inhibitors oleanolic acid (1), edgeworin (2), betulinic acid (3), and stigmasterol (4). Study of these pol beta inhibitors revealed that three of them inhibited both the lyase and polymerase activities of DNA polymerase beta, while stigmasterol inhibited only the lyase activity. Further investigation indicated that the four inhibitors had substantially different effects on the DNA-pol beta binary complex that is believed to be an obligatory intermediate in the lyase reaction. It was found that the inhibitors potentiated the inhibitory action of the anticancer drug bleomycin in cultured A549 cells, without any influence on the expression of pol beta in the cells. The results of the unscheduled DNA synthesis assay support the thesis that the potentiation of bleomycin cytotoxicity by DNA pol beta inhibitors was a result of an inhibition of DNA repair synthesis.  相似文献   

17.
DNA polymerase (pol) beta is a two-domain DNA repair enzyme that undergoes structural transitions upon binding substrates. Crystallographic structures indicate that these transitions include movement of the amino-terminal 8-kDa lyase domain relative to the 31-kDa polymerase domain. Additionally, a polymerase subdomain moves toward the nucleotide-binding pocket after nucleotide binding, resulting in critical contacts between alpha-helix N and the nascent base pair. Kinetic and structural characterization of pol beta has suggested that these conformational changes participate in stabilizing the ternary enzyme-substrate complex facilitating chemistry. To probe the microenvironment and dynamics of both the lyase domain and alpha-helix N in the polymerase domain, the single native tryptophan (Trp-325) of wild-type enzyme was replaced with alanine, and tryptophan was strategically substituted for residues in the lyase domain (F25W/W325A) or near the end of alpha-helix N (L287W/W325A). Influences of substrate on the fluorescence anisotropy decay of these single tryptophan forms of pol beta were determined. The results revealed that the segmental motion of alpha-helix N was rapid ( approximately 1 ns) and far more rapid than the step that limits chemistry. Binding of Mg(2+) and/or gapped DNA did not cause a noticeable change in the rotational correlation time or angular amplitude of tryptophan in alpha-helix N. More important, binding of a correct nucleotide significantly limited the angular range of the nanosecond motion within alpha-helix N. In contrast, the segmental motion of the 8-kDa domain was "frozen" upon DNA binding alone, and this restriction did not increase further upon nucleotide binding. The dynamics of alpha-helix N are discussed from the perspective of the "open" to "closed" conformational change of pol beta deduced from crystallography, and the results are more generally discussed in the context of reaction cycle-regulated flexibility for proteins acting as molecular motors.  相似文献   

18.
Nucleotide sequence analysis of the cDNA and the genomic clones for rat DNA polymerase beta revealed the existence of a 1,005-base pair open reading frame capable of encoding a Mr = 38,269 polypeptide of 335 amino acid residues. The region of 174 amino acid residues between the 42nd and 215th residues of the DNA polymerase beta polypeptide has extensive amino acid sequence homology with the region between the 195th and 366th residues of human terminal deoxynucleotidyltransferase. The two enzymes share extensive homology not only in primary structures but also in the computer-derived higher structures in these particular regions. The genes for DNA polymerase beta and terminal deoxynucleotidyltransferase are proposed to be derived from a common ancestral DNA polymerase gene.  相似文献   

19.
We have previously reported that sulfoquinovosylmonoacylglycerol (SQMG) is a potent inhibitor of mammalian DNA polymerases. DNA polymerase beta (pol beta) is one of the most important enzymes protecting the cell against DNA damage by base excision repair. In this study, we characterized the inhibitory action of SQMG against rat pol beta. SQMG competed with both the substrate and the template-primer for binding to pol beta. A gel mobility shift assay and a polymerase activity assay showed that SQMG competed with DNA for a binding site on the N-terminal 8-kDa domain of pol beta, subsequently inhibiting its catalytic activity. Fragments of SQMG such as sulfoquinovosylglycerol (SQG) and fatty acid (myristoleic acid, MA) weakly inhibited pol beta activity and the inhibitory effect of a mixture of SQG and MA was stronger than that of SQG or MA. To characterize this inhibition more precisely, we attempted to identify the interaction interface between SQMG and the 8-kDa domain by NMR chemical shift mapping. Firstly, we determined the binding site on a fragment of SQMG, the SQG moiety. We observed chemical shift changes primarily at two sites, the residues comprising the C-terminus of helix-1 and the N-terminus of helix-2, and residues in helix-4. Finally, based on our present results and our previously reported study of the interaction interface of fatty acids, we constructed two three-dimensional models of a complex between the 8-kDa domain and SQMG and evaluated them by the mutational analysis. The models show a SQMG interaction interface that is consistent with the data.  相似文献   

20.
Kinetics of human polymerase beta binding to gapped DNA substrates having single stranded (ss) DNA gaps with five or two nucleotide residues in the ssDNA gap has been examined, using the fluorescence stopped-flow technique. The mechanism of the recognition does not depend on the length of the ssDNA gap. Formation of the enzyme complex with both DNA substrates occurs by a minimum three-step reaction, with the bimolecular step followed by two isomerization steps. The results indicate that the polymerase initiates the association with gapped DNA substrates through the DNA-binding subsite located on the 8-kDa domain of the enzyme. This first association step is independent of the length of the ssDNA gap and is characterized by similar rate constants for both examined DNA substrates. The subsequent, first-order transition occurs at the rate of approximately 600-1200 s(-1). This is the major docking step accompanied by favorable free energy changes in which the 31-kDa domain engages in interactions with the DNA. The 5'-terminal PO(4)(-) group downstream from the primer is not a specific recognition element of the gap. However, the phosphate group affects the enzyme orientation in the complex with the DNA, particularly, for the substrate with a longer gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号