首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the complete nucleotide sequence of the transposable element Uhu from the vicinity of the alcohol dehydrogenase (Adh) gene of Drosophila heteroneura (an endemic Hawaiian Drosophila). The complete element is about 1650 base-pairs (bp) long, has 46-50 base-pair inverse imperfect repeats at it's ends, and contains a large open reading frame potentially encoding a 192 amino acid protein. We demonstrate that Uhu belongs to a class of transposable elements which includes Tc1 from Caenorhabditis elegans, Barney from Caenorhabditis briggsae, and HB1 from Drosophila melanogaster. All of these elements share significant sequence similarity, are approximately 1600 base pairs long, have short inverse terminal repeats (ITRs), contain open reading frames (ORFs) with significant sequence identity, and appear to insert specifically at TA sequences generating target site duplications.  相似文献   

2.
In this paper we present the sequence of an intact Caenorhabditis briggsae transposable element, Tcb2. Tcb2 is 1606 base pairs in length and contains 80 base pair imperfect terminal repeats and a single open reading frame. We have identified blocks of T-rich repeats in the regions 150-200 and 1421-1476 of this element which are conserved in the Caenorhabditis elegans element Tc1. The sequence conservation of these regions in elements from different Caenorhabditis species suggests that they are of functional importance. A single open reading frame corresponding to the major open reading frame of Tc1 is conserved among Tc1, Tcb1, and Tcb2. Comparison of the first 550 nucleotides of the sequence among the three elements has allowed the evaluation of a model proposing an extension of the major open reading frame. Our data support the suggestion that Tc1 is capable of producing a 335 amino acid protein. A comparison of the sequence coding for the amino and carboxy termini of the 273 amino acid transposase from Caenorhabditis Tc1-like elements and Drosophila HB1 showed different amounts of divergence for each of these regions, indicating that the two functional domains have undergone different amounts of selection. Our data are not compatible with the proposal that Tc1-related sequences have been acquired via horizontal transmission. The divergence of Tc1 from the two C. briggsae elements, Tcb1 and Tcb2, indicated that all three elements have been diverging from each other for approximately the same amount of time as the genomes of the two species.  相似文献   

3.
Summary We have identified two repetitive element families in the genome of the nematodeCaenorhabditis briggsae with extensive sequence identity to theCaenorhabditis elegans transposable element Tc1. Five members each of the TCb1 (previously known as Barney) and TCb2 families were isolated by hybridization to a Tc1 probe. Tc1-hybridizing repetitive elements were grouped into either the TCb1 or TCb2 family based on cross-hybridization intensities among theC. briggsae elements. The genomic copy number of the TCb1 family is 15 and the TCb2 family copy number is 33 in theC. briggsae strain G16. The two transposable element families show numerous genomic hybridization pattern differences between twoC. briggsae strains, suggestive of transpositional activity. Two members of the TCb1 family, TCb1#5 and TCb1#10, were sequenced. Each of these two elements had suffered an independent single large deletion. TCb1#5 had a 627-bp internal deletion and TCb1#10 had lost 316 bp of one end. The two sequenced TCb1 elements were highly conserved over the sequences they shared. A 1616-bp composite TCb1 element was constructed from TCb1#5 and TCb1#10. The composite TCb1 element has 80-bp terminal inverted repeats with three nucleotide mismatches and two open reading frames (ORFs) on opposite strands. TCb1 and the 1610-bp Tc1 share 58% overall nucleotide sequence identity, and the greatest similarity occurs in their ORF1 and inverted repeat termini.  相似文献   

4.
A novel Tc1-like transposable element has been identified as a new DNA transposon in the mud loach, Misgurnus mizolepis. The M. mizolepis Tc1-like transposon (MMTS) is comprised of inverted terminal repeats and a single gene that codes Tc1-like transposase. The deduced amino acid sequence of the transposase-encoding region of MMTS transposon contains motifs including DDE motif, which was previously recognized in other Tc1-like transposons. However, putative MMTS transposase has only 34-37% identity with well-known Tc1, PPTN, and S elements at the amino acid level. In dot-hybridization analysis used to measure the copy numbers of the MMTS transposon in genomes of the mud loach, it was shown that the MMTS transposon is present at about 3.36 x 104 copies per 2 x 109 bp, and accounts for approximately 0.027% of the mud loach genome. Here, we also describe novel MMTS-like transposons from the genomes of carp-like fishes, flatfish species, and cichlid fishes, which bear conserved inverted repeats flanking an apparently intact transposase gene. Additionally, BLAST searches and phylogenetic analysis indicated that MMTS-like transposons evolved uniquely in fishes, and comprise a new subfamily of Tc1-like transposons, with only modest similarity to Drosophila melanogaster (foldback element FB4, HB2, HB1), Xenopus laevis, Xenopus tropicalis, and Anopheles gambiae (Frisky).  相似文献   

5.
Caenorhabditis elegans and Caenorhabditis briggsae are two closely related nematode species that are nearly identical morphologically. Interspecific cross-hybridizing DNA appears to be restricted primarily to coding regions. We compared portions of the hsp-3 homologs, two grp 78-like genes, from C. elegans and C. briggsae and detected regions of DNA identity in the coding region, the 5' flanking DNAs, and the introns. The hsp-3 homologs share approximately 98% and 93% identity at the amino acid and nucleotide levels, respectively. Using the nucleotide substitution rate at the silent third position of the codons, we have estimated a lower limit for the date of divergence between C. elegans and C. briggsae to be approximately 23-32 million years ago. The 5' flanking DNAs and one of the introns contain elements that are highly conserved between C. elegans and C. briggsae. Some of the regions of nucleotide identity in the 5' flanking DNAs correspond to previously detected identities including viral enhancer sequences, a heat shock element, and an element present in the regulatory regions of mammalian grp78 and grp94 genes. We propose that a comparison of C. elegans and C. briggsae sequences will be useful in the detection of potential regulatory and structural elements.  相似文献   

6.
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silkworm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C. elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.  相似文献   

7.
Summary We report here the discovery of a family of transposable elements, which we refer to as Fotl elements, in the fungal plant pathogen Fusarium oxysporum. The first element was identified as an insertion in the gene encoding nitrate reductase. It is 1928 by long, has 44 by inverted terminal repeats, contains a large open reading frame and is flanked by a 2 by (TA) target site duplication. This element shares significant structural similarities with a class of transposons that includes Tc1 from Caenorhabditis elegans and therefore represents a new class of transposable elements in fungi.  相似文献   

8.
We report the cloning and characterisation of Pot2, a putative transposable element from Magnaporthe grisea. The element is 1857 by in size, has 43-bp perfect terminal inverted repeats (TIRs) and 16-bp direct repeats within the TIRs. A large open reading frame, potentially coding for a transposase-like protein, was identified. This putative protein coding region showed extensive identity to that of Fott, a transposable element from another phytopathogenic fungus, Fusarium oxysporum. Pot2, like the transposable elements Tc1 and Mariner of Caenorhabditis elegans and Drosophila, respectively, duplicates the dinucleotide TA at the target insertion site. Sequence analysis of DNA flanking 12 Pot2 elements revealed similarity to the consensus insertion sequence of Tct. Pot2 is present at a copy number of approximately 100 per haploid genome and represents one of the major repetitive DNAs shared by both rice and non-rice pathogens of M. grisea.  相似文献   

9.
We report the cloning and characterisation of Pot2, a putative transposable element from Magnaporthe grisea. The element is 1857 by in size, has 43-bp perfect terminal inverted repeats (TIRs) and 16-bp direct repeats within the TIRs. A large open reading frame, potentially coding for a transposase-like protein, was identified. This putative protein coding region showed extensive identity to that of Fott, a transposable element from another phytopathogenic fungus, Fusarium oxysporum. Pot2, like the transposable elements Tc1 and Mariner of Caenorhabditis elegans and Drosophila, respectively, duplicates the dinucleotide TA at the target insertion site. Sequence analysis of DNA flanking 12 Pot2 elements revealed similarity to the consensus insertion sequence of Tct. Pot2 is present at a copy number of approximately 100 per haploid genome and represents one of the major repetitive DNAs shared by both rice and non-rice pathogens of M. grisea.  相似文献   

10.
The complete nucleotide sequences of two copies of a putative insertion sequence IS1000 from Thermus thermophilus HB8 are presented. IS1000 is 1196 base pairs long, contains a long open reading frame which could code for a protein of 317 amino acids, and has imperfect terminal inverted repeats of 6 base pairs (confirmed by the terminal sequencing of 4.5 copies of IS1000), but does not cause a target site duplication. There are at least 6 copies of IS1000 in the genome of T. thermophilus HB8. A search of the GEN-EMBL data base revealed that the putative 317 amino acid protein had significant homology with open reading frames in the transposable elements IS110 of Streptomyces coelicolor and IS492 of Pseudomonas atlantica.  相似文献   

11.
Here we report the characterization of a human mRNA encoding a novel protein denoted C1orf9 (chromosome 1 open reading frame 9). The cDNA sequence, derived from a testis cDNA library, contains 5700 bp which encodes an open reading frame of 1254 amino acids. The deduced protein contains a putative N-terminal signal peptide and one putative transmembrane region, indicating membrane localization. No significant homology was found with known characterized proteins. However, a 150 amino acid region has significant homology to deduced protein sequences from other organisms, including Caenorhabditis elegans (43% identity), Saccharomyces cerevisiae (47% identity), Schizosaccharomyces pombe (48% identity), and two proteins from Arabidopsis thaliana (42% and 40% identity), suggesting a novel family of conserved domains. The C1orf9 gene was assigned to chromosome 1q24. The gene spans approximately 78.7 kb and is organized into at least 24 exons. Expression analysis revealed a single C1orf9 mRNA species of approximately 6.0 kb with a predominant expression in pancreas and testis, and only low levels of expression in other tissues examined.  相似文献   

12.
13.
Capriglione T  Odierna G  Caputo V  Canapa A  Olmo E 《Gene》2002,295(2):193-198
We report the presence of Tc1 transposon-like sequences in the Antarctic ice-fish Chionodraco hamatus, belonging to the Notothenioidei. The complete DNA sequence of these transposon-like elements is reduced in length compared to other Tc1 transposons, but it appears to share significant structural similarities with them. It contains a degenerate open reading frame, whose inferred 264 amino acid sequence shares sequence similarity with the 'aspartic acid, aspartic acid (35) glutamic acid' family of transposases, particularly those from Caenorhabditis species (sp.) and Drosophila sp. Southern blot analysis and polymerase chain reaction amplification indicate that Tc1 transposon-like sequences are present in other notothenioid species, though their amount can vary in the different lineages.  相似文献   

14.
We characterized five transposable elements from fish: one from zebrafish (Brachydanio rerio), one from rainbow trout (Salmo gairdneri), and three from Atlantic salmon (Salmo salar). All are closely similar in structure to the Tel transposon of the nematode Caenorhabditis elegans. A comparison of 17 Tc1-like transposons from species representing three phyla (nematodes, arthropods, and chordates) showed that these elements make up a highly conserved transposon family. Most are close to 1.7 kb in length, have inverted terminal repeats, have conserved terminal nucleotides, and each contains a single gene encoding similar poly peptides. The phylogenetic relationships of the transposons were reconstructed from the amino acid sequences of the conceptual proteins and from DNA sequences. The elements are highly diverged and have evidently inhabited the genomes of these diverse species for a long time. To account for the data, it is not necessary to invoke recent horizontal transmission.  相似文献   

15.
Conservation of the C.elegans tra-2 3'UTR translational control.   总被引:3,自引:1,他引:2       下载免费PDF全文
The Caenorhabditis elegans sex-determination gene, tra-2, is translationally regulated by two 28 nt elements (DREs) located in the 3'UTR that bind a factor called DRF. This regulation requires the laf-1 gene activity. We demonstrate that the nematode Caenorhabditis briggsae tra-2 gene and the human oncogene GLI are translationally regulated by elements that are functionally equivalent to DREs. Here, we rename the DREs to TGEs (tra-2 and GLI elements). Similarly to the C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs repress translation of a reporter transgene in a laf-1 dependent manner. Furthermore, they regulate poly(A) tail length and bind DRF. We also find that the C.elegans TGEs control translation and poly(A) tail length in C.briggsae and rodent cells. Moreover, these same organisms contain a factor that specifically associates with the C.elegans TGEs. These findings are consistent with the TGE control being present in C.briggsae and rodent cells. Three lines of evidence indicate that C.briggsae tra-2 and GLI are translationally controlled in vivo by TGEs. First, like C.elegans tra-2 TGEs, the C.briggsae tra-2 and GLI TGEs control translation and poly(A) tail lengths in C.briggsae and rodent cells, respectively. Second, the same factor in C.briggsae and mammalian cells that binds to the C.elegans tra-2 TGEs binds the C.briggsae tra-2 and GLI TGEs. Third, deletion of the GLI TGE increases GLI's ability to transform cells. These findings suggest that TGE control is conserved and regulates the expression of other mRNAs.  相似文献   

16.
R. Caizzi  C. Caggese    S. Pimpinelli 《Genetics》1993,133(2):335-345
We have identified a new middle repetitive DNA family in Drosophila melanogaster. This family is composed of a 1.7-kb element, called Bari-1, that shows common characteristics with many transposable elements. Bari-1 is present in a few euchromatic sites that vary in different stocks. However, it is peculiar in that most copies are homogeneously clustered with a unique location in a specific heterochromatic region close to the centromere of the second chromosome. The molecular analysis of different copies coming from the euchromatin and the heterochromatin has revealed that, independent of their location, all possess the same open reading frame. The putative protein encoded by Bari-1 shares similarity with the transposase of the Tc1 transposon of Caenorhabditis elegans. We compare the Bari-1 organization with other mobile DNA families and discuss the possibility of some functional role for the heterochromatic cluster.  相似文献   

17.
The collagen prolyl 4-hydroxylases (P4Hs) are essential for proper extracellular matrix formation in multicellular organisms. The vertebrate enzymes are alpha(2)beta(2) tetramers, in which the beta subunits are identical to protein disulfide isomerase (PDI). Unique P4H forms have been shown to assemble from the Caenorhabditis elegans catalytic alpha subunit isoforms PHY-1 and PHY-2 and the beta subunit PDI-2. A mixed PHY-1/PHY-2/(PDI-2)(2) tetramer is the major form, while PHY-1/PDI-2 and PHY-2/PDI-2 dimers are also assembled but less efficiently. Cloning and characterization of the orthologous subunits from the closely related nematode Caenorhabditis briggsae revealed distinct differences in the assembly of active P4H forms in spite of the extremely high amino acid sequence identity (92-97%) between the C. briggsae and C. elegans subunits. In addition to a PHY-1/PHY-2(PDI-2)(2) tetramer and a PHY-1/PDI-2 dimer, an active (PHY-2)(2)(PDI-2)(2) tetramer was formed in C. briggsae instead of a PHY-2/PDI-2 dimer. Site-directed mutagenesis studies and generation of inter-species hybrid polypeptides showed that the N-terminal halves of the Caenorhabditis PHY-2 polypeptides determine their assembly properties. Genetic disruption of C. briggsae phy-1 (Cb-dpy-18) via a Mos1 insertion resulted in a small (short) phenotype that is less severe than the dumpy (short and fat) phenotype of the corresponding C. elegans mutants (Ce-dpy-18). C. briggsae phy-2 RNA interference produced no visible phenotype in the wild type nematodes but produced a severe dumpy phenotype and larval arrest in phy-1 mutants. Genetic complementation of the C. briggsae and C. elegans phy-1 mutants was achieved by injection of a wild type phy-1 gene from either species.  相似文献   

18.
A novel family of miniature inverted repeat transposable elements (MITEs) named Pony was discovered in the yellow fever mosquito, Aedes aegypti. It has all the characteristics of MITEs, including terminal inverted repeats, no coding potential, A+T richness, small size, and the potential to form stable secondary structures. Past mobility of PONY: was indicated by the identification of two Pony insertions which resulted in the duplication of the TA dinucleotide targets. Two highly divergent subfamilies, A and B, were identified in A. aegypti based on sequence comparison and phylogenetic analysis of 38 elements. These subfamilies showed less than 62% sequence similarity. However, within each subfamily, most elements were highly conserved, and multiple subgroups could be identified, indicating recent amplifications from different source genes. Different scenarios are presented to explain the evolutionary history of these subfamilies. Both subfamilies share conserved terminal inverted repeats similar to those of the Tc2 DNA transposons in Caenorhabditis elegans, indicating that Pony may have been borrowing the transposition machinery from a Tc2-like transposon in mosquitoes. In addition to the terminal inverted repeats, full-length and partial subterminal repeats of a sequence motif TTGATTCAWATTCCGRACA represent the majority of the conservation between the two subfamilies, indicating that they may be important structural and/or functional components of the Pony elements. In contrast to known autonomous DNA transposons, both subfamilies of PONY: are highly reiterated in the A. aegypti genome (8,400 and 9, 900 copies, respectively). Together, they constitute approximately 1. 1% of the entire genome. Pony elements were frequently found near other transposable elements or in the noncoding regions of genes. The relative abundance of MITEs varies in eukaryotic genomes, which may have in part contributed to the different organizations of the genomes and reflect different types of interactions between the hosts and these widespread transposable elements.  相似文献   

19.
The commonly studied Caenorhabditis elegans strain Bristol N2 contains approximately 15 copies per genome of the transposon Tc3. However, Tc3 is not active in Bristol N2. Tc3 contains one major open reading frame (Tc3A). We have fused this open reading frame to an inducible promoter and expressed it in a transgenic Bristol N2 line. Tc3A expression resulted in frequent excision and transposition of endogenous Tc3 elements. This shows that the Bristol N2 genome contains Tc3 transposons that are cis proficient for transposition, but are immobile because Tc3A is absent. We demonstrate that recombinant Tc3A binds specifically to the terminal nucleotides of the Tc3 inverted repeat, indicating that Tc3A is the Tc3 transposase. Activation of Tc3 transposition in vivo was accompanied by the appearance of extrachromosomal, linear copies of Tc3. These may be intermediates in Tc3 transposition.  相似文献   

20.
L J Harris  A M Rose 《Plasmid》1989,22(1):10-21
The transposable element Tc1 in the genome of Caenorhabditis elegans var. Bristol strain N2 is very stable. In order to investigate possible causes of Tc1 immobility in this strain 17 individual isolates have been cloned and characterized with regard to their structure and genomic environment. Ten of 16 elements examined had identical restriction maps, and at least 1 of these (#7) showed a high level of somatic excision. Two of the elements had altered restriction sites, 2 had different internal deletions of about 700 bp, 1 had an 89-bp terminal deletion, and 1 a 54-bp insertion. When DNA sequences flanking the N2 Tc1 elements were used as probes in genomic hybridizations, it was found that most N2 elements are located in regions of repetitive DNA. Furthermore when hybridizations to DNA from N2 and var. Bergerac strain B0 were performed, a major band of the same size was observed in both strains. Two flanking sequences identified strain polymorphic sites hP2(IV) and hP3(IV). In at least one of these cases, a rearranged Tc1 was present in the B0 strain at the same location. The fact that all or most of the Tc1 elements are in the same location in N2 and B0 adds support to the hypothesis that the high copy number B0 strain arose from amplification of Tc1 copies in a N2-like strain. The N2 Tc1 elements are highly conserved; however, intact elements had fewer nucleotide changes than the rearranged elements. These results may indicate that the intact Tc1 elements in N2 are functionally active and subject to selective pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号