首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predation risk is an environmental stressor that can induce changes in prey behavior and physiology. Perception of predation risk may indirectly affect offspring traits and future fitness prospects via impacts on the condition of parents. Females may influence the survival of their offspring via maternal effects, especially when breeding in stressful conditions. We investigated the effects of continuous predation risk perceived by mothers on the maternal allocation of immune factors and carotenoids in eggs of the pied flycatcher Ficedula hypoleuca. We collected eggs from wild pied flycatchers that bred in the vicinity of a predator nest (pygmy owl Glaucidium passerinum), were exposed to cues of a mammalian nest predator (urine of least weasel Mustela nivalis), or received appropriate controls for these two groups. Pied flycatchers transferred more immunoglobulin in eggs under high predation risk in both owl and mammalian predator treatments. The presence of owl nests also lowered the level of lysozyme transferred in the eggs in one of the two study years. Predation risk did not modify egg size or overall carotenoid levels. Our results show that continuous predation risk perceived by females during egg‐laying affects egg composition. This different allocation of maternal immune factors may be an adaptive response evolved to increase the probability of offspring survival.  相似文献   

2.
Immune‐challenged vertebrate and invertebrate females can transfer immunity to their offspring. This trans‐generational immune priming (TGIP) is beneficial for the offspring if the maternal infection risk persists across generations. However, because immunity is costly, fitness consequences of TGIP have been found in primed offspring. Furthermore, transferring immunity to offspring may be costly for immune‐challenged females who are also carrying the costs of their immune response. A negative relationship between levels of immunity between mothers and offspring might therefore be expected. Consistent with this hypothesis, we show that in the insect, Tenebrio molitor, the magnitude of antibacterial immune response of immune‐challenged females negatively correlates with levels of antibacterial activity of their eggs. This negative relationship was only present in small females that are inherently of lower quality. Furthermore, female body size did not affect immune responsiveness to the challenge, indicating that small females favoured their immunity at the expenses of that of their eggs.  相似文献   

3.
Despite a vast literature on the factors controlling adult size, few studies have investigated how maternal size affects offspring size independent of direct genetic effects, thereby separating prenatal from postnatal influences. I used a novel experimental design that combined a cross-fostering approach with phenotypic manipulation of maternal body size that allowed me to disentangle prenatal and postnatal maternal effects. Using the burying beetle Nicrophorus vespilloides as model organism, I found that a mother''s body size affected egg size as well as the quality of postnatal maternal care, with larger mothers producing larger eggs and raising larger offspring than smaller females. However, with respect to the relative importance of prenatal and postnatal maternal effects on offspring growth, only the postnatal effects were important in determining offspring body size. Thus, prenatal effects can be offset by the quality of postnatal maternal care. This finding has implications for the coevolution of prenatal and postnatal maternal effects as they arise as a consequence of maternal body size. In general, my study provides evidence that there can be transgenerational phenotypic plasticity, with maternal size determining offspring size leading to a resemblance between mothers and their offspring above and beyond any direct genetic effects.  相似文献   

4.
Vertebrates have an immature immune system soon after birth, and parasites can therefore be particularly virulent to young hosts. Transfer of immune factors via the egg can give rise to early maternal effects with important consequences for offspring fitness, as maternally derived immunity confers anti-parasite protection. Mothers are expected to allocate immunity differentially to the eggs according to the reproductive value of their offspring as influenced by the quality of their father. In this study, we analysed transmission to the yolk of antibodies specific to an antigen (Newcastle disease virus vaccine, NDV) by vaccinated female barn swallows (Hirundo rustica) mated to males whose secondary sexual characteristics had been manipulated. Concentration of anti-NDV antibodies in the yolk positively covaried with that in maternal plasma. Anti-NDV antibodies were more concentrated in the first but not the fourth eggs laid by females mated with tail-elongated males compared with those mated with tail-shortened and control males. This experiment shows that allocation of maternal immune factors to the eggs is affected by quality of the male, as signalled by its secondary sexual characteristic. Thus, early maternal effects are influenced by sexual attractiveness of male mates and are mediated by immunity.  相似文献   

5.
Eggs of vertebrates contain steroid hormones of maternal origin that may influence offspring performance. Recently, it has been shown that glucocorticoids, which are the main hormones mediating the stress response in vertebrates, are transmitted from the mother to the egg in birds. In addition, mothers with experimentally elevated corticosterone levels lay eggs with larger concentrations of the hormone, which produce slow growing offspring with high activity of the hypothalamo-adrenal axis under acute stress. However, the effects and function of transfer of maternal corticosterone to the eggs are largely unknown. In the present study, we injected corticosterone in freshly laid eggs of yellow-legged gulls (Larus michahellis), thus increasing the concentration of the hormone within its natural range of variation, and analyzed the effect of manipulation on behavioral, morphological, and immune traits of the offspring in the wild. Eggs injected with corticosterone had similar hatching success to controls, but hatched later. Mass loss during incubation was greater for corticosterone-treated eggs, except for the last laid ones. Corticosterone injection reduced rate and loudness of late embryonic vocalizations and the intensity of chick begging display. Tonic immobility response, reflecting innate fearfulness, was unaffected by hormone treatment. Elevated egg corticosterone concentrations depressed T-cell-mediated immunity but had no detectable effects on humoral immune response to a novel antigen, viability at day 10, or growth. Present results suggest that egg corticosterone can affect the behavior and immunity of offspring in birds and disclose a mechanism mediating early maternal effects whereby stress experienced by females may negatively translate to offspring phenotypic quality.  相似文献   

6.
1. Trans‐generational immune priming is a phenomenon in insects in which the offspring of mothers previously challenged with a focal microbe exhibit a survival advantage when challenged with that microbe. 2. Maternal egg provisioning with immune factors such as antimicrobial peptides (AMPs) is widely believed to contribute to the primed phenotype. However, other ‘socially mediated’ environmental factors secreted or excreted by the mother and others in the community, such as the gut microbiota or pheromones, may also affect offspring immune phenotype. 3. The relative contributions of maternal egg provisioning and socially mediated environmental factors to the primed larval phenotype were assessed by performing a cross‐fostering survival experiment with Tribolium castaneum, in which the eggs of primed or naïve mothers were sterilised, treated with the frass of primed or naïve beetles, and challenged as larvae with the maternal pathogen, Bacillus thuringiensis. 4. Larvae from primed mothers showed greater survival than unprimed larvae, regardless of frass treatment; maternal treatment therefore showed a substantially greater contribution to larval priming than frass treatment. 5. Planned contrast tests to quantify the contributions of maternal and environmental matching revealed that maternal treatment mattered more for larvae exposed to primed, rather than unprimed, frass. This suggests that the effects of maternal egg provisioning may be exacerbated or mitigated by environmental factors. 6. Thus, although maternal egg provisioning plays a predominant role in producing the primed phenotype, environmental matching may matter for priming in some contexts.  相似文献   

7.
Rollinson N  Hutchings JA 《Oecologia》2011,166(4):889-898
Positive associations between maternal investment per offspring and maternal body size have been explained as adaptive responses by females to predictable, body size-specific maternal influences on the offspring’s environment. As a larger per-offspring investment increases maternal fitness when the quality of the offspring environment is low, optimal egg size may increase with maternal body size if larger mothers create relatively poor environments for their eggs or offspring. Here, we manipulate egg size and rearing environments (gravel size, nest depth) of Atlantic salmon (Salmo salar) in a 2 × 2 × 2 factorial experiment. We find that the incubation environment typical of large and small mothers can exert predictable effects on offspring phenotypes, but the nature of these effects provides little support to the prediction that smaller eggs are better suited to nest environments created by smaller females (and vice versa). Our data indicate that the magnitude and direction of phenotypic differences between small and large offspring vary among maternal nest environments, underscoring the point that removal of offspring from the environmental context in which they are provisioned in the wild can bias experimentally derived associations between offspring size and metrics of offspring fitness. The present study also contributes to a growing literature which suggests that the fitness consequences of egg size variation are often more pronounced during the early juvenile stage, as opposed to the egg or larval stage.  相似文献   

8.
Crespi EJ  Lessig H 《Oecologia》2004,138(2):306-311
In the terrestrial salamander (Plethodon cinereus), previous work has shown that mothers body size is positively correlated to offspring size at the time of hatching even after controlling for the effects of egg size. This study was designed to determine whether maternal body size affects offspring size via pre-oviposition factors (e.g., yolk quality, jelly coat composition, or maternal genes) or post-oviposition factors (e.g., parental care behaviors, parental modification of environment). Gravid females were captured and induced to lay eggs in experimental chambers in which the environment was standardized. Fifteen clutches were exchanged, or cross-fostered, between female pairs differing in body size. Ten females whose eggs were taken away and then returned served as controls for the crossing treatment. Foster mothers did not significantly differ from control mothers in the time spent with eggs, body position, or number of egg movements during brooding. Average egg mass measured midway through development was not significantly correlated to the body size of either the genetic or foster mother, but was correlated to pre-oviposition oocyte size. At hatching, offspring body length was positively correlated to egg size and the foster mothers body size. This correlation suggests that in P. cinereus post-oviposition maternal effects have a greater impact on offspring size than other maternal factors incorporated into the egg prior to oviposition. While our study showed that larger mothers moved their eggs less often and tended to spend more time in contact with their eggs, further work needs to be done to identify the specific mechanisms through which larger mothers influence the body size of their offspring. This is the first experimental demonstration of post-oviposition maternal effects for any amphibian with parental care.  相似文献   

9.
Egg quality is a phenotype of, and can profoundly influence fitness in, both mother and offspring. However, the physiological mechanisms that underlie this maternal effect are poorly understood. Carotenoids are hypothesized to enhance antioxidant activity and immune function, and are responsible for the pigmentation of egg yolk. The proximate basis and consequences of this maternal investment, however, have not previously been studied in wild birds. In this supplemental feeding study of lesser black-backed gulls, Larus fuscus, carotenoid-fed females are shown to have increased integument pigmentation, higher plasma concentrations of carotenoids and antioxidant activity, and lower plasma concentrations of immunoglobulins (Igs) in comparison with controls. In turn, carotenoid-fed females produced eggs containing high carotenoid but low Ig concentrations (i.e. passive immunity), whereas control females produced eggs containing low carotenoid but high Ig concentrations. Within-clutch patterns of these resources varied over the laying sequence in a similar manner in both carotenoid-fed and control nests. Our results suggest that carotenoids could be one resource responsible for egg quality maternal effects in birds. We discuss the possible implications of carotenoid-mediated effects on phenotype for fitness in mothers and their offspring.  相似文献   

10.
1. Maternal carotenoids in the egg yolk have been hypothesized to promote maturation of the immune system and protect against free radical damages. Depending on availability, mothers may thus influence offspring quality by depositing variable amounts of carotenoids into the eggs. Sex allocation theory predicts that in good quality environments, females should invest into offspring of the sex that will provide larger fitness return, generally males. 2. In a field experiment we tested whether female great tits bias their investment towards males when carotenoid availability is increased, and whether male offspring of carotenoid-supplemented mothers show higher body condition. We partially cross-fostered hatchlings to disentangle maternal effects from post-hatching effects, and manipulated hen flea Ceratophyllus gallinae infestation to investigate the relationship between carotenoid availability and resistance to ectoparasites. 3. As predicted, we found that carotenoid-supplemented mothers produced males that were heavier than their sisters at hatching, while the reverse was true for control mothers. This suggests that carotenoid availability during egg production affects male and female hatchlings differentially, possibly via a differential allocation to male and female eggs. 4. A main effect of maternal supplementation became visible 14 days after hatching when nestlings hatched from eggs laid by carotenoid-supplemented mothers had gained significantly more mass than control nestlings. Independently of the carotenoid treatment, fleas impaired mass gain of nestlings during the first 9 days in large broods only and reduced tarsus length of male nestlings at an age of 14 days, suggesting a cost to mount a defence against parasites. 5. Overall, our results suggest that pre-laying availability of carotenoids affects nestling condition in a sex-specific way with potentially longer-lasting effects on offspring fitness.  相似文献   

11.
In many vertebrates and invertebrates, offspring whose mothers have been exposed to pathogens can exhibit increased levels of immune activity and/or increased survival to infection. Such phenomena, called “Trans-generational immune priming” (TGIP) are expected to provide immune protection to the offspring. As the offspring and their mother may share the same environment, and consequently similar microbial threats, we expect the immune molecules present in the progeny to be specific to the microbes that immune challenged the mother. We provide evidence in the mealworm beetle Tenebrio molitor that the antimicrobial activity found in the eggs is only active against Gram-positive bacteria, even when females were exposed to Gram-negative bacteria or fungi. Fungi were weak inducers of TGIP while we obtained similar levels of anti-Gram-positive activity using different bacteria for the maternal challenge. Furthermore, we have identified an antibacterial peptide from the defensin family, the tenecin 1, which spectrum of activity is exclusively directed toward Gram-positive bacteria as potential contributor to this antimicrobial activity. We conclude that maternal transfer of antimicrobial activity in the eggs of T. molitor might have evolved from persistent Gram-positive bacterial pathogens between insect generations.  相似文献   

12.
Maternal effects can be adaptive and because of their intrinsic time delays may have important effects on population dynamics. In vertebrates, and increasingly invertebrates, it is well established that offspring defence is in part determined by maternal parasite exposure. It has also been suggested that there may be indirect maternal effects on immunity mediated by other components of the maternal environment, including density and resource availability. Here, we examine the effect maternal resource availability has on the immunity of offspring in an insect-virus system. We use five different maternal resource levels and examine immunity in the offspring both directly, by challenge with a virus, and by measuring a major component of the immune system, across three offspring environments. Both the direct infection assay and the measure of immunocompetence show clearly that offspring from mothers in poor environments are more resistant to parasites. This may result from life-history optimization of mothers in poor environments, or because the poor environment acts as a cue for higher disease risk in the next generation. This emphasizes the importance of maternal effects on disease resistance, mediated through indirect environmental factors that will have important implications to both the ecological and evolutionary dynamics of host-parasite interactions.  相似文献   

13.
The question of why maternal stress influences offspring phenotype is of significant interest to evolutionary physiologists. Although embryonic exposure to maternally derived glucocorticoids (i.e., corticosterone) generally reduces offspring quality, effects may adaptively match maternal quality with offspring demand. We present results from an interannual field experiment in European starlings (Sturnus vulgaris) designed explicitly to examine the fitness consequences of exposing offspring to maternally derived stress hormones. We combined a manipulation of yolk corticosterone (yolk injections) with a manipulation of maternal chick-rearing ability (feather clipping of mothers) to quantify the adaptive value of corticosterone-induced offspring phenotypes in relation to maternal quality. We then examined how corticosterone-induced "matching" within this current reproductive attempt affected future fecundity and maternal survival. First, our results provide support that low-quality mothers transferring elevated corticosterone to eggs invest in daughters as predicted by sex allocation theory. Second, corticosterone-mediated sex-biased investment resulted in rapid male-biased mortality resulting in brood reduction, which provided a better match between maternal quality and brood demand. Third, corticosterone-mediated matching reduced investment in current reproduction for low-quality mothers, resulting in fitness gains through increased survival and future fecundity. Results indicate that the transfer of stress hormones to eggs by low-quality mothers can be adaptive since corticosterone-mediated sex-biased investment matches the quality of a mother to offspring demand, ultimately increasing maternal fitness. Our results also indicate that the branding of the proximate effects of maternal glucocorticoids on offspring as negative ignores the possibility that short-term phenotypic changes may actually increase maternal fitness.  相似文献   

14.
Young vertebrates have limited capacity to synthesize antibodies and are dependent on the protection of maternally transmitted antibodies for humoral disease resistance early in life. However, mothers may enhance fitness by priming their offspring's immune systems to elevate disease resistance. Transgenerational induced defences have been documented in plants and invertebrates, but maternal priming of offspring immunity in vertebrates has been essentially neglected. To test the ability of mothers to stimulate the immune systems of offspring, we manipulated maternal and offspring antigen exposure in a wild population of birds, pied flycatchers (Ficedula hypoleuca). We show that immunization of the mother before egg laying apparently stimulates a transgenerational defence against pathogens by elevating endogenous offspring antibody production. If the disease environments encountered by mothers and offspring are similar, this transgenerational immune priming may allow young to better cope with the local pathogen fauna.  相似文献   

15.
Learning is an important form of phenotypic plasticity that allows organisms to adjust their behaviour to the environment. An individual''s learning performance can be affected by its mother''s environment. For example, mothers exposed to stressors, such as restraint and forced swimming, often produce offspring with impaired learning performance. However, it is unclear whether there are maternal effects on offspring learning when mothers are exposed to ecologically relevant stressors, such as predation risk. Here, we examined whether maternal predator-exposure affects adult offsprings’ learning of a discrimination task in threespined sticklebacks (Gasterosteus aculeatus). Mothers were either repeatedly chased by a model predator (predator-exposed) or not (unexposed) while producing eggs. Performance of adult offspring from predator-exposed and unexposed mothers was assessed in a discrimination task that paired a particular coloured chamber with a food reward. Following training, all offspring learned the colour-association, but offspring of predator-exposed mothers located the food reward more slowly than offspring of unexposed mothers. This pattern was not driven by initial differences in exploratory behaviour. These results demonstrate that an ecologically relevant stressor (predation risk) can induce maternal effects on offspring learning, and perhaps behavioural plasticity more generally, that last into adulthood.  相似文献   

16.
1. Adaptive maternal programming occurs when mothers alter their offspring's phenotype in response to environmental information such that it improves offspring fitness. When a mother's environment is predictive of the conditions her offspring are likely to encounter, such transgenerational plasticity enables offspring to be better-prepared for this particular environment. However, maternal effects can also have deleterious effects on fitness.2. Here, we test whether female threespined stickleback fish exposed to predation risk adaptively prepare their offspring to cope with predators. We either exposed gravid females to a model predator or not, and compared their offspring's antipredator behaviour and survival when alone with a live predator. Importantly, we measured offspring behaviour and survival in the face of the same type of predator that threatened their mothers (Northern pike).3. We did not find evidence for adaptive maternal programming; offspring of predator-exposed mothers were less likely to orient to the predator than offspring from unexposed mothers. In our predation assay, orienting to the predator was an effective antipredator behaviour and those that oriented, survived for longer.4. In addition, offspring from predator-exposed mothers were caught more quickly by the predator on average than offspring from unexposed mothers. The difference in antipredator behaviour between the maternal predator-exposure treatments offers a potential behavioural mechanism contributing to the difference in survival between maternal treatments.5. However, the strength and direction of the maternal effect on offspring survival depended on offspring size. Specifically, the larger the offspring from predator-exposed mothers, the more vulnerable they were to predation compared to offspring from unexposed mothers.6. Our results suggest that the predation risk perceived by mothers can have long-term behavioural and fitness consequences for offspring in response to the same predator. These stress-mediated maternal effects can have nonadaptive consequences for offspring when they find themselves alone with a predator. In addition, complex interactions between such maternal effects and offspring traits such as size can influence our conclusions about the adaptive nature of maternal effects.  相似文献   

17.
Trans-generational immune priming (TGIP) corresponds to the plastic adjustment of offspring immunity as a result of maternal immune experience. TGIP is expected to improve mother's fitness by improving offspring individual performance in an environment where parasitism becomes more prevalent. However, it was recently demonstrated that maternal transfer of immunity to the offspring is costly for immune-challenged female insects. Thus, these females might not provide immune protection to all their offspring because of the inherent cost of other fitness-related traits. Females are therefore expected to adjust their investment to individual offspring immune protection in ways that maximize their fitness. In this study, we investigated how bacterially immune-challenged females of the mealworm beetle, Tenebrio molitor, provision their eggs with immune protection according to egg production. We found that immune-challenged females provide a variable number of their eggs with internal antibacterial activity along egg-laying bouts. Furthermore, within the first immune-protected egg-laying bout (2-4 days after the maternal immune challenge), the number of eggs protected was strongly dependent on the number of eggs produced. Immune-challenged females might therefore adjust their investment into TGIP and fecundity according of their individual perception of the risk of dying from the infection and the expected parasitic conditions for the offspring.  相似文献   

18.
Animals exist in dynamic environments that may affect both their own fitness and that of their offspring. Maternal effects might allow mothers to prepare their offspring for the environment in which they will be born via several mechanisms, not all of which are well understood. Resource scarcity and forced resource allocation are two scenarios that could affect maternal investment by altering the amount and type of resources available for investment in offspring, albeit in potentially different ways. We tested the hypothesis that maternal dietary restriction and sprint training have different consequences for the offspring phenotype in an oviparous lizard (Anolis carolinensis). To do this, we collected and reared eggs from adult diet-manipulated females (low-diet [LD] or high-diet [HD]) and sprint-trained females (sprint trained [ST] or untrained [UT]) and measured both egg characteristics and hatchling morphology. ST and LD mothers laid both the fewest and heaviest eggs, and ST, UT, and LD eggs also had significantly longer incubation periods than the HD group. Hatchlings from the diet experiment (LD and HD offspring) were the heaviest overall. Furthermore, both body mass of the mother at oviposition and change in maternal body mass over the course of the experiment had significant and sometimes different effects on egg and offspring phenotypes, highlighting the importance of maternal energetic state to the allocation of maternal resources.  相似文献   

19.
The expression of sexually-selected traits such as bright plumage, exaggerated antlers, and elongated eyestalks can be highly influenced by environmental factors, including the behaviors of mothers. Many recent studies have described the ways that maternal behavior can influence the expression of sexually-selected traits in offspring, however, few studies have investigated if and how such maternal effects might change, over time, in natural populations. Here, we examine the influence of maternal oviposition site on the expression of offspring sexually-selected traits in four successive cohorts of the heliconia bug, Leptoscelis tricolor (Hemiptera: Coreidae). Female heliconia bugs lay eggs on multiple host plant species, and offspring remain on these plants for the entirety of growth and development. We found that natal plant species had significant effects on the expression of male sexually-selected traits and the degree of sexual dimorphism. Moreover, these effects changed over time for later cohorts, concurrent with changes in host plant resources. Our results suggest that maternal effects can be a significant and dynamic influence on the sexually-selected traits of offspring. Such environmental effects on sexually-selected traits could have broad implications for the processes and outcomes of sexual selection.  相似文献   

20.
Secondary sexual characters have been hypothesized to revealthe ability of males to resist debilitating parasites. Althoughsuch reliable signaling of parasite resistance may be maintainedby parasite–host coevolution, maternal effects potentiallyprovide a previously neglected factor that could affect thelevel of genetic variation in resistance to parasites. Thatcould be the case because maternal effects have an entirelyenvironmental basis, or because they can maintain considerableamounts of genetic variation through epistatic effects, evenin the presence of strong directional selection. Maternal effectshave been shown to occur as maternal allocation of immune factorsto offspring, and such allocation may depend on the mating prospectsof sons, causing mothers to differentially allocate maternaleffects to eggs in species subject to intense sexual selection.Here we show that a maternal effect through innate antibacterialimmune defense, lysozyme, which is transferred from the motherto the egg in birds, is positively associated with the evolutionof secondary sexual characters. Previous studies have shownthat females differentially allocate lysozyme to their eggswhen mated to attractive males, and elevated levels of lysozymeare associated with reduced hatching failure and superior healthamong neonates and adults. In this study, comparative analysesof lysozyme from eggs of 85 species of birds showed a strongpositive relationship between brightness of male plumage andegg lysozyme, even when controlling for potentially confoundingvariables. These findings suggest that maternal immune factorsmay play a role in the evolution of secondary sexual characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号