首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have carried out solution equilibrium binding studies of ICP8, the major single-stranded DNA (ssDNA)-binding protein of herpes simplex virus type I, in order to determine the thermodynamic parameters for its interaction with ssDNA. Fluorescence anisotropy measurements of a 5'-fluorescein-labeled 32-mer oligonucleotide revealed that ICP8 formed a nucleoprotein filament on ssDNA with a binding site size of 10 nucleotides/ICP8 monomer, an association constant at 25 degrees C, K = 0.55 +/- 0.05 x 10(6) M(-1), and a cooperativity parameter, omega = 15 +/- 3. The equilibrium constant was largely independent of salt, deltalog(Komega)/deltalog([NaCl]) = -2.4 +/- 0.4. Comparison of these parameters with other ssDNA-binding proteins showed that ICP8 reacted with an unusual mechanism characterized by low cooperativity and weak binding. In addition, the reaction product was more stable at high salt concentrations, and fluorescence enhancement of etheno-ssDNA by ICP8 was higher than for other ssDNA-binding proteins. These last two characteristics are also found for protein-DNA complexes formed by recombinases in their active conformation. Given the proposed role of ICP8 in promoting strand transfer reactions, they suggest that ICP8 and recombinase proteins may catalyze homologous recombination by a similar mechanism.  相似文献   

2.
We used indirect immunofluorescence to examine the factors determining the intranuclear location of herpes simplex virus (HSV) DNA polymerase (Pol) in infected cells. In the absence of viral DNA replication, HSV Pol colocalized with the HSV DNA-binding protein ICP8 in nuclear framework-associated structures called prereplicative sites. In the presence of viral DNA replication, HSV Pol colocalized with ICP8 in globular intranuclear structures called replication compartments. In cells infected with mutant viruses encoding defective ICP8 molecules, Pol localized within the cell nucleus but showed a general diffuse intranuclear distribution. In uninfected cells transfected with a plasmid expressing Pol, Pol similarly showed a diffuse intranuclear distribution. Therefore, Pol can localize to the cell nucleus without other viral proteins, but functional ICP8 is required for Pol to localize to prereplicative sites. In cells infected with mutant viruses encoding defective Pol molecules, ICP8 localized to prereplicative sites. Thus, Pol or the portions of Pol not expressed by the mutant viruses are not essential for the formation of prereplicative sites or the localization of ICP8 to these structures. These results demonstrate that a specific nuclear protein can influence the intranuclear location of another nuclear protein.  相似文献   

3.
ICP8, the major single-stranded DNA-binding protein of herpes simplex virus type 1, promotes renaturation of complementary single strands of DNA. This reaction is ATP independent but requires Mg2+. The activity is maximal at pH 7.6 and 80 mM NaCl. The major product of the reaction is double-stranded DNA, and no evidence of large DNA networks is seen. The reaction occurs at subsaturating concentrations of ICP8 but reaches maximal levels with saturating concentrations of ICP8. Finally, the renaturation reaction is second order with respect to DNA concentration. The ability of ICP8 to promote the renaturation of complementary single strands suggests a role for ICP8 in the high level of recombination seen in cells infected with herpes simplex virus type 1.  相似文献   

4.
Synthetic oligonucleotide linkers containing translational termination codons in all possible reading frames were inserted at various positions in the cloned gene encoding the herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein, ICP4. It was determined that the amino-terminal 60 percent of the ICP4 gene was sufficient for trans-induction of a thymidine kinase promoter-CAT chimera (pTKCAT) and negative regulation of an ICP4 promoter-CAT chimera (pIE3CAT); however, it was relatively inefficient in complementing an ICP4 deletion mutant. The amino-terminal ninety amino acids do not appear to be required for infectivity as reflected by the replication competence of a mutant virus containing a linker insertion at amino acid 12. The size of the ICP4 molecule expressed from the mutant virus was consistent with translational restart at the next methionine codon corresponding to amino acid 90 of the deduced ICP4 amino acid sequence.  相似文献   

5.
6.
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.  相似文献   

7.
8.
Desai P  Sexton GL  Huang E  Person S 《Journal of virology》2008,82(22):11354-11361
The herpes simplex virus type 1 (HSV-1) UL37 gene encodes a 120-kDa polypeptide which resides in the tegument structure of the virion and is important for morphogenesis. The goal of this study was to use green fluorescent protein (GFP) to follow the fate of UL37 within cells during the normal course of virus replication. GFP was inserted in frame at the C terminus of UL37 to generate a fluorescent-protein-tagged UL37 polypeptide. A virus designated K37eGFP, which replicated normally on Vero cells, was isolated and was shown to express the fusion polypeptide. When cells infected with this virus were examined by confocal microscopy, the fluorescence was observed to be predominantly cytoplasmic. As the infection progressed, fluorescence began to accumulate in a juxtanuclear structure. Mannosidase II and giantin were observed to colocalize with UL37eGFP at these structures, as judged by immunofluorescence assays. Therefore, UL37 traffics to the Golgi complex during infection. A VP26mRFP marker (red fluorescent protein fused to VP26) was recombined into K37eGFP, and when cells infected with this “dual-color” virus were examined, colocalization of the red (capsid) and green (UL37) fluorescence in the Golgi structure was observed. Null mutations in VP5 (ΔVP5), which abolished capsid assembly, and in UL36 (Δ36) were recombined into the K37eGFP virus genome. In cells infected with K37eGFP/ΔVP5, localization of UL37eGFP to the Golgi complex was similar to that for the parental virus (K37eGFP), indicating that trafficking of UL37eGFP to the Golgi complex did not require capsid structures. Confocal analysis of cells infected with K37eGFP/Δ36 showed that, in the absence of UL36, accumulation of UL37eGFP at the Golgi complex was not evident. This indicates an interaction between these two proteins that is important for localization of UL37 in the Golgi complex and thus possibly for cytoplasmic envelopment of the capsid. This is the first demonstration of a functional role for UL36:UL37 interaction in HSV-1-infected cells.  相似文献   

9.
We have developed a baculovirus expression system for the rapid and efficient production of large quantities (>5 mg/10(8) cells) of ICP8. The recombinant ICP8 is fully functional and binds to single-stranded DNA. Secondary structure calculations from circular dichroism measurements indicate a content of 34.5% alpha-helix and 15.4% beta-sheet. This is the first structural report for ICP8 using CD analysis, which will be very useful for high-throughput assay development and mechanistic studies.  相似文献   

10.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

11.
The rate of annealing of long linear complementary single-stranded (ss) DNAs can be increased greatly by certain DNA-binding proteins including the herpes simplex virus type 1 ICP8 SSB/recombinase. Using electron microscopy, we have investigated the DNA-protein structures involved in ICP8-mediated DNA annealing. We show that the formation of superhelical ICP8-ssDNA filaments is required for annealing. Two superhelices interact with each other to form a coiled-coil, which is the intermediate in annealing. In this process, the superhelices likely rotate and translocate relative to each other. Psoralen/UV photocrosslinking studies revealed that meta-stable contacts form at sites of limited sequence homology during the annealing. Partial proteolysis of ICP8 in the protein-ssDNA complexes showed that Mg2+ induces conformational changes in the N-terminal region (amino acid residues 1-305) of ICP8. In addition to Mg2+, Ca2+ and, to a significantly lesser extent, Cu2+ and Mn2+, were found to induce superhelix formation of the ICP8-ssDNA filament and to facilitate annealing. Mechanisms for how the coiled-coil structures facilitate annealing are discussed.  相似文献   

12.
The mechanism of stimulation of a DNA helicase by its cognate single-strand DNA-binding protein was examined using herpes simplex virus type-1 UL9 DNA helicase and ICP8. UL9 and ICP8 are two essential components of the viral replisome that associate into a complex to unwind the origins of replication. The helicase and DNA-stimulated ATPase activities of UL9 are greatly elevated as a consequence of this association. Given that ICP8 acts as a single-strand DNA-binding protein, the simplest model that can account for its stimulatory effect predicts that it tethers UL9 to the DNA template, thereby increasing its processivity. In contrast to the prediction, data presented here show that the stimulatory activity of ICP8 does not depend on its single-strand DNA binding activity. Our data support an alternative hypothesis in which ICP8 modulates the activity of UL9. Accordingly, the data show that the ICP8-binding site of UL9 constitutes an inhibitory region that maintains the helicase in an inefficient ground state. ICP8 acts as a positive regulator by neutralizing this region. ICP8 does not affect substrate binding, ATP hydrolysis, or the efficiency of translocation/DNA unwinding. Rather, we propose that ICP8 increases the efficiency with which substrate binding and ATP hydrolysis are coupled to translocation/DNA unwinding.  相似文献   

13.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

14.
Using peptide antisera specific for regions within the N terminus and C terminus of the predicted UL36 gene product, immunoblotting experiments were performed to demonstrate definitively that ICP1/2 is encoded by the UL36 gene. These data also suggest that both the cell- and the virion-associated forms of ICP1/2 are colinear with the complete predicted amino acid sequence of the UL36 gene. Computer-assisted analyses of the predicted amino acid sequence of the UL36 gene revealed the presence of two putative leucine zipper-type motifs and a potential ATP-binding domain. The possible functions of these consensus domains will also be discussed.  相似文献   

15.
16.
The UL37 gene of herpes simplex virus (HSV) encodes a 120-kDa phosphoprotein associated with the virion. In this study, we have generated a rabbit polyclonal antiserum against HSV-2 UL37 protein, and examined its intracellular localization by immunofluorescence study. In infected cells, specific fluorescence was detectable in the perinuclear region. In transfected cells, UL37 protein was observed mainly in the cytoplasm. Transfection assays of deletion mutants of UL37 protein suggested that the leucine rich region (LRR) containing amino acids 263-273 may be important for cytoplasmic localization. Deletion of the LRR or substitution of the leucine residues resulted in nuclear remaining of UL37 protein. Moreover, the LRR could export green fluorescent protein (GFP) to the cytoplasm as a fusion protein and this export was blocked by leptomycin B treatment, indicating that the LRR acted as a nuclear export signal. These results suggest that UL37 protein fulfills a role as a shuttle between the nucleus and the cytoplasm through the LRR.  相似文献   

17.
The herpes simplex virus type 1 (HSV-1) UL37 open reading frame encodes a 120-kDa late (gamma 1), nonstructural protein in infected cells. Recent studies in our laboratory have demonstrated that the UL37 protein interacts in the cytoplasm of infected cells with ICP8, the major HSV-1 DNA-binding protein. As a result of this interaction, the UL37 protein is transported to the nucleus and can be coeluted with ICP8 from single-stranded DNA columns. Pulse-labeling and pulse-chase studies of HSV-1-infected cells with [35S]methionine and 32Pi demonstrated that UL37 was a phosphoprotein which did not have a detectable rate of turnover. The protein was phosphorylated soon after translation and remained phosphorylated throughout the viral replicative cycle. UL37 protein expressed from a vaccinia virus recombinant was also phosphorylated during infection, suggesting that the UL37 protein was phosphorylated by a cellular kinase and that interaction with the ICP8 protein was not a prerequisite for UL37 phosphorylation.  相似文献   

18.
19.
The herpes simplex virus type-1 single-strand DNA-binding protein ICP8 is a 128-kDa zinc metalloprotein. In this communication we have shown that unsubstituted and bromodeoxyuridine-substituted oligonucleotides can be specifically crosslinked to ICP8 by UV irradiation. We have used this approach to show that the single-strand DNA-binding site of ICP8 resides within a 53.5-kDa tryptic polypeptide. This polypeptide initiates at alanine 368 and was estimated to extend through arginine 902. A polypeptide encompassing residues 368-902 synthesized in vitro exhibited single-strand DNA-binding activity. We conclude that the region encompassing residues 368-902 contains the single-strand DNA-binding site of ICP8. Moreover, photoaffinity labeling of ICP8 with oligonucleotides provides a means of specifically modifying its single-strand DNA-binding site, thereby facilitating future studies on the importance of its single-strand DNA-binding activity in its interaction with other DNA replication enzymes.  相似文献   

20.
The UL37 open reading frame of the herpes simplex virus type 1 (HSV-1) DNA genome is located between map units 0.527 and 0.552. We have identified and characterized the UL37 protein product in HSV-1-infected cells. The presence of the UL37 protein was detected by using a polyclonal rabbit antiserum directed against an in vitro-translated product derived from an in vitro-transcribed UL37 mRNA. The UL37 open reading frame encodes for a protein with an apparent molecular mass of 120 kDa in HSV-1-infected cells; the protein's mass was assigned on the basis of its migration in sodium dodecyl sulfate-polyacrylamide gels. The UL37 protein is not present at detectable levels in purified HSV-1 virions, suggesting that it is not a structural protein. Analysis of time course experiments and experiments using DNA synthesis inhibitors demonstrated that the UL37 protein is expressed prior to the onset of viral DNA synthesis, reaching maximum levels late in infection, classifying it as a gamma 1 gene. Elution of HSV-1-infected cell proteins from single-stranded DNA agarose columns by using a linear KCl gradient demonstrated that the UL37 protein elutes from this matrix at a salt concentration similar to that observed for ICP8, the major HSV-1 DNA-binding protein. In addition, computer-assisted analysis revealed a potential ATP-binding domain in the predicted UL37 amino acid sequence. On the basis of the kinetics of appearance and DNA-binding properties, we hypothesize that UL37 represents a newly recognized HSV-1 DNA-binding protein that may be involved in late events in viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号