首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
选取广西、湖南等地野生葡萄,与经典酿酒葡萄比较,研究抗氧化活性和活性物质,同时监测葡萄酒发酵过程中各指标的动态变化,并对不同品种葡萄酒的抗菌性进行研究。结果表明:赤霞珠的酚类含量和抗氧化活性高于野生葡萄和玫瑰香葡萄,但野生葡萄酒的抗菌性能显著优于赤霞珠和玫瑰香葡萄酒。葡萄酒在发酵过程中其抗氧化活性和酚类物质含量均随发酵过程的进行而升高;总抗氧化活性与总酚含量、氧自由基清除能力与原花青素含量成显著正相关,相关系数均大于0.989;总花色苷含量在发酵初期上升,后期下降,葡萄酒颜色变浅。  相似文献   

3.
Spectroscopic analysis was used to study the effect of wine processing on phenolic composition. Various classes of phenolic compounds were detected and characterized by ultraviolet (UV) and infrared (IR) spectroscopy in white grapes of Sauvignon Blanc and French Colombard, as well as in wines prepared from these grapes. Combined treatment with bentonite, egg albumin and Polyclar AT decreased the amounts of catechols, flavonols, anthocyanins and leucoanthocyanins. Polyphenols (32–17%), anthocyanogens (64–48%) and proteins (62–77%) were removed by this technological process. The best results were received when not only wines, but also musts were pretreated with bentonite. Comparisons of the polyphenol compositions of wines made from the same grape variety grown in different locations of the same vintage and between two vintages are reported.  相似文献   

4.
Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate.  相似文献   

5.
While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies.  相似文献   

6.
The vast majority of wine proteins have recently been identified as pathogenesis-related (PR) proteins. During the growing season, these proteins are expressed in developmentally dependent and inducible manners in grapevine leaves and grape berries, in which they are believed to play an important role in protection against fungal pathogens and possibly other stresses. Because of their inherent resistance to proteolytic attack and to the low pH values characteristic of wines, vinification can be seen as a "purification strategy" for grape PR proteins. The inevitable consequent accumulation of these proteins in wines becomes a technological nuisance because they adversely affect the clarity and stability of wines. Genetically modified vines underexpressing PR proteins would certainly lead to stable wines but would increase the plant susceptibility to fungal attack, and the actual trend seems to be in the opposite direction, that is overexpressing these proteins to obtain plants with enhanced resistance to pathogens--a trend that will probably augment problems associated with protein instability in the resulting wines.  相似文献   

7.
Geosmin, an off-flavour of some rotten grapes, has been implicated in wine defects. Botrytis cinerea and Penicillium expansum were the most common among the numerous microorganisms isolated from rotten grapes. P. expansum produces geosmin on model media but not healthy grape juice. However, geosmin synthesis by P. expansum was demonstrated in grape juice and on crushed grapes that had been pre-cultured with certain B. cinerea strains. 34 out of 156 B. cinerea strains ([bot +] phenotype) isolated from the centre of grape bunches were able to induce high geosmin production, up to 494 ng/l, by P. expansum in grape juice. A study of the impact of grape juice composition on geosmin synthesis by P. expansum revealed the importance of nitrogen composition, particularly amino-acid deficiency. Metabolism of amino acids by B. cinerea was shown to be favourable to geosmin synthesis by P. expansum. However, the amino-acid and ammonium concentrations in grape juices pre-cultured with B. cinerea [bot -] and [bot +] strains were very similar implying that other factors are involved as well. Indeed, an ethanol-precipitable fraction, probably a polysaccharide, synthesized by B. cinerea [bot -], but not [bot +] strains, inhibited geosmin production by P. expansum.  相似文献   

8.
It was recently shown that wines contain typically a huge diversity of structurally similar polypeptides that exhibit a high degree of homology to pathogenesis-related (PR) proteins. This observation suggested the existence of one or a few precursors in mature grapes, common to most or all the wine PR proteins. Limited proteolysis and chemical modification of the precursor(s) during fruit ripening and winemaking could then generate the large number of distinct wine polypeptides. However, the patterns of PR proteins extracted from grape berries regularly harvested from the onset of development until maturity did not confirm the previous hypothesis. Two different methodologies, involving 2-D immunoblotting and a combination of FPLC cation/anion exchange chromatographies with 1-D immunoblotting, indicate that the total concentration of PR proteins is increased but its diversity is reduced from the early stages of berry development until maturity. These results indicate that PR proteins are synthesized in a wide variety of forms from the early stages of grape development, eliminating the hypothesis previously formulated on the existence of one or few precursors common to the wine proteins.  相似文献   

9.
10.
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20–30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.  相似文献   

11.
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20-30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.  相似文献   

12.
The yeast has important role in fermentation of wine grapes and wine quality. The fermentation of wine grapes affect by efficiency of particular yeast strain, sugar content, pH, available temperature, etc. To evaluate the efficiency of yeast strains (Premier Cuvee, RS-1, RS-2, RS-3 and natural), present study was conducted on two wine grape varieties viz.; Sauvignon Blanc (White) and Cabernet Sauvignon (Red). Efficiency of yeast strains was evaluated in terms of conversion rate of sugar into alcohol. As per recorded data, strain RS-3 (Pichia kudriavzevii) was found more efficient than other strains in fermentation of Cabernet Sauvignon with efficiency of 84.4 per cent but in case of Sauvignon Blanc, the commercial culture Premier Cuevee was found superior over RS-3. The quality parameters of young wines of both the varieties were also affected by the used strains. Considering the efficiency and impact on various parameters of wines, local strain, i.e., RS-3 was found at par with commercial culture (Premier Cuvee). The RS-3 strain has potential to produce quality wines. However, studies on effects of RS-3 strain on some specific quality parameters of wines like varietal aroma compounds, flavours etc. are needed.  相似文献   

13.
The chemical composition of grape berries is influenced by various environmental conditions often considered to be representative of a “terroir”. If grapes from a given terroir are assumed to reflect this origin in their chemical compositions, the corresponding wine should also reflect it. The aim of this work was therefore to reveal the “terroir” expression within the chemodiversity of grapes and related wines, using ultrahigh-resolution mass spectrometry. Grapes and corresponding wines, from two distinct – though very proximate – terroirs of Burgundy were analyzed over three vintages (2010, 2011 and 2012). Ultrahigh-resolution mass spectrometry and ultra-high performance liquid chromatography were used as untargeted and targeted approaches to discriminate complex chemical fingerprints for vintages, classes (wines, skins or musts), and terroirs. Statistical analyses revealed that even if vintages have the most significant impact on fingerprints, the most significant terroir differences are seen in the grapes of a given vintage.  相似文献   

14.
The specific flavour of Sherry-type wines requires aromatic compounds produced as by-products of the oxidative metabolism of yeasts that are able to form a biofilm (flor) at the wine surface. A similar yeast pellicle develops on the surface of 'Tokaji Szamorodni', one of the traditional Hungarian botrytized wines, during maturation. In this work, patterns of biotinylated cell wall proteins extracted from film-forming and nonfilm-forming Saccharomyces cerevisiae strains were compared. It was found that all the tested 23 film-forming 'Szamorodni' yeast strains had a decreased size of the Ccw7/Hsp150 protein, one of the members of the Pir-protein family. Sequencing of the encoding genes revealed that the strains were lacking three out of the 11 repeating sequences characteristic to this protein family. One of the film-forming strains contained CCW7 alleles of different length, which was generated by intragenic tandem duplication of a sequence containing two repetitive domains. Unlike the film-forming strains, 16 nonfilm-forming wine yeasts isolated from a different botrytized wine, 'Tokaji Aszu', showed pronounced polymorphism of the CCW7 locus. It is highly probable that the modified Ccw7 protein does not contribute to the increased hydrophobicity of film-forming strains but it may influence molecular reorganization of the cell wall during stress adaptation.  相似文献   

15.
Aims:  Some fungi present on the surface of grapes may have a negative effect on the quality of wine. The aim of this study was to evaluate PCR-denaturing gradient gel electrophoresis (PCR-DGGE), for the establishment of fungal community profiles from grapes, in order to monitor fungi potentially involved in wine defects.
Methods and Results:  A fragment of the β-tubulin gene was amplified from filamentous fungi and yeasts described from grapes and analysed using two different denaturing gradient gels to constitute a reference database. The use of β-tubulin sequences instead of ITS rDNA in PCR-DGGE showed a progress in the discrimination of these fungal species but comigration problems were still observed. The technique was then applied on grape samples. The profiles counted up to 10 bands of which half corresponded to species which were not recorded in the reference database.
Conclusion:  PCR-DGGE represents a useful tool to compare environmental samples for the study of the dynamics of fungal communities, but comigrations represent a limit in its use to describe the species present.
Significance and Impact of the Study:  A better knowledge of the fungal diversity on grapes, particularly species responsible for wine defect, is necessary to develop accurate molecular detection tools.  相似文献   

16.
Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in control S. cerevisiae wines, whereas the total concentrations of esters were not significantly different.  相似文献   

17.
The main volatile by-products of the alcoholic fermentation of grape wine, cider and apple pulp wine were investigated to determine if any correlated with spoilage resistance in the latter two. Spoilage was visually detected after seven days in low-alcohol grape wine in comparison to 11 and 16 days in cider and apple pulp wine, respectively. Acetaldehyde, ethyl acetate, methanol, propanol, isobutanol and amyl alcohols were the main fermentation by-products detected in all three wines. There were highest concentrations of acetaldehyde, ethyl acetate, methanol and propanol in grape wine and, therefore, these by-products could not be implicated in spoilage resistance in apple wines. Increased concentrations of isobutanol and amyl alcohols, however, in cider and apple pulp wine in comparison to grape wine might have been the reason for spoilage resistance in the apple wines.  相似文献   

18.
A process for the utilization of modified whey syrups in wine alcohol fermentations is described. Palatable wines containing 10–12.5% alcohol were produced when various strains of S. cerevisiae var. ellipsoideus were fermented with hydrolyzed whey permeate syrups and grape juice concentrates. Experimental control of final alcohol and residual sugar levels in the wines by various chaptalization techniques is discussed. The possibility of utilizing this process in areas where both whey and grapes are abundant is mentioned.  相似文献   

19.
Ice wine is a sweet dessert wine made from pressing grapes naturally frozen on the vines. The structure and metabolic characteristics of native microbial community dominated by organics and nutrients transformation in fermenting process of ice wine on the grape skin are likely to change due to climate events. Our objective was to evaluate the influence of harvest time on structure and metabolic characteristics of bacterial and fungal communities on Vidal ice grape surface. Vidal grape samples were picked between October and December in 2018; Harvest 1 (VG1): 14 October; Harvest 2 (VG2): 16 November; Harvest 3 (VG3): 18 December. Vishniacozyma, Alternaria, Cladosporium, Stenotrophomonas, unidentified_Cyanobacteria and Sphingomonas existed in all harvest dates and were the main genera widespread in most grape samples from the three harvest periods. Saprotrophic fungi and bacteria involved in metabolism were also dominant. For fungi, wood saprotrophs and unidentified saprotrophs were detected comprising Phoma, Didymella, Filobasidium and Clavaria. Delayed harvest of ice grapes has a distinct advantage for pathogen reduction compared with that of normally harvested grapes. Among bacteria, the most frequently occurring types in the metabolism category were energy metabolism, carbohydrate metabolism and lipid metabolism. In short, the harvest period can positively regulate the function of Vidal ice grape epidermal microorganisms.  相似文献   

20.
Microbial ecology and activity in wine production influences grapevine health and productivity, conversion of sugar to ethanol during fermentation, wine aroma, wine quality and distinctiveness. Fungi in the vineyard ecosystem are not well described. Here, we characterized the spatial and temporal dynamics of fungal communities associated with the grapevine (grapes, flowers, leaves, and roots) and soils over an annual growth cycle in two vineyards to investigate the influences of grape habitat, plant developmental stage (flowering, fruit set, veraison, and harvest), vineyards, and climatic conditions. Fungi were influenced by both the grapevine habitat and plant development stage. The core microbiome was prioritized over space and time, and the identified core members drove seasonal community succession. The developmental stage of veraison, where the grapes undergo a dramatic change in metabolism and start accumulating sugar, coincided with a distinct shift in fungal communities. Co-occurrence networks showed strong correlations between the plant microbiome, the soil microbiome, and weather indices. Our study describes the complex ecological dynamics that occur in microbial assemblages over a growing season and highlight succession of the core community in vineyards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号